Interrogation 2 Corrigé

1. On considère $f: x \mapsto x + \cos(x)$ sur $[0, \frac{\pi}{2}]$. A l'aide d'un argument de convexité / concavité, déterminer un encadrement de la forme

$$\forall x \in [0, \frac{\pi}{2}], \alpha_1 x + \beta_1 \leqslant f(x) \leqslant \alpha_2 x + \beta_2.$$

Corrigé

La fonction f est deux fois dérivable et $\forall x \in [0, \frac{\pi}{2}], f''(x) = -\cos(x) \leq 0$. On en déduit que f est concave (-f) est convexe). De ce fait, on sait que la courbe de f est « en dessous » des ses tangentes et « au dessus » de ses cordes. Comme f(0) = 1 et $f'(0) = 1 + \sin 0 = 1$, la tangente au point d'abscisse 1 est d'équation : y = x + 1. De même, la corde sur l'intervalle considéré est la droite passant par les points (0, f(0)) et $(\frac{\pi}{2}, f(\frac{\pi}{2}))$. C'est-à-dire les points (0, 1)et $(\frac{\pi}{2}, \frac{\pi}{2})$. On en déduit que l'équation de la corde est : $y = 1 + \frac{\frac{\pi}{2} - 1}{\frac{\pi}{2}}x$. Finalement, pour tout x dans $\left[0, \frac{\pi}{2}\right]$:

$$1 + \frac{\frac{\pi}{2} - 1}{\frac{\pi}{2}} x \leqslant f(x) \leqslant x + 1.$$

2. Déterminer la nature des intégrales suivantes :

□ Converge **☑** Diverge

 \square Converge **☑** Diverge

 \square Converge **☑** Diverge

a) $\int_{1}^{+\infty} \frac{\ln t}{t} dt$
b) $\int_{1}^{+\infty} \frac{1}{t \ln t} dt$
c) $\int_{0}^{1} \frac{\cos t}{t^2} dt$
d) $\int_{1}^{2} \frac{1}{\sqrt{t^3 - 5t^2 + 8t - 4}} dt$

- \square Converge
- **☑** Diverge

3. Pour tout entier naturel n on pose

$$I_n = \int_0^{+\infty} t^n e^{-t^2} dt$$

(a) Montrer que I_n converge

Soit $n \in \mathbb{N}$. La fonction $f_n : t \mapsto t^n e^{-t^2}$ est continue sur $[0, +\infty[$. De plus

$$t^2 f_n(t) = t^{n+2} e^{-t^2} \xrightarrow[t \to +\infty]{} 0$$

car $t^{n+2}e^{-t^2}=(t^2)^{\frac{n+2}{2}}e^{-t^2}$ et que $X^{\alpha}e^{-X}\underset{X\to+\infty}{\longrightarrow}0$. On en déduit que $f_n(t)=\underset{+\infty}{o}\left(\frac{1}{t^2}\right)$. La fonction $t\mapsto\frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ donc f_n aussi. Cela montre que l'intégrale $\int_1^{+\infty}f_n$ est absolument convergente donc de l'intégrale $f_n(t)$ est convergente.

(b) Déterminer une relation de récurrence entre I_n et I_{n+2}

On procède par intégration par partie.

$$I_n = \int_0^{+\infty} t^n e^{-t^2} dt = \left[\frac{t^{n+1}}{n+1} e^{-t^2} \right]_0^{+\infty} + \frac{2}{n+1} I_{n+2} = \frac{2}{n+1} I_{n+2}$$

car le crochet converge et vaut 0.

Remarque: En sachant que

$$I_0 = \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
 (intégrale de Gauss)

et que

$$I_1 = \int_0^{+\infty} t e^{-t^2} dt = \left[-\frac{1}{2} e^{-t^2} \right]_0^{+\infty} = \frac{1}{2}$$

on peut exprimer I_n .