Exercice 1

Soit $\alpha \in \mathbb{R}$.

Notons $f_{\alpha}: x \mapsto \frac{x \ln x}{(1+x^2)^{\alpha}}$.

 f_{α} est continue par morceaux sur $]0, +\infty[$.

Quand $x \to 0$, $f_{\alpha}(x) \to \frac{0}{1} = 0$. Ainsi f_{α} se prolonge en une fonction continue sur $[0, \infty[$ donc intégrable au voisinage de 0 car intégrable sur le segment [0,1] (variante : $f_{\alpha}(x) = o_{x\to 0}(1)$ et $x\mapsto 1=\frac{1}{x^0}$ est intégrable au voisinage de zéro).

Pour $\beta \in \mathbb{R}$, $x^{\beta} f_{\alpha}(x) \equiv_{x \to +\infty} x^{\beta+1-2\alpha} \ln x$ donc quand $x \to +\infty$, $x^{\beta} f_{\alpha}(x)$ tend vers 0 si $\beta < 2\alpha - 1$ et vers $+\infty$

Si $\alpha > 1$, l'intervalle $]1, 2\alpha - 1[$ est non vide et prenant β dans cet intervalle, $f_{\alpha}(x) = o_{x \to +\infty}(\frac{1}{x^{\beta}}),$ et comme $\beta > 1$, la fonction $x \mapsto \frac{1}{x^{\beta}}$ est intégrable au voisinage de $+\infty$ (elle l'est sur $[1, +\infty[)$). Donc $\int_{]0, +\infty[} f_{\alpha}$ converge

Si $\alpha \leq 1$, $xf_{\alpha}(x)$ tend vers $+\infty$ quand $x \to +\infty$ donc $\frac{1}{x} = o_{x \to +\infty}(f(x))$ et comme $x \mapsto \frac{1}{x}$ n'est pas intégrable au voisinage de $+\infty$, f_{α} ne l'est pas non plus. f_{α} étant positive, $\int_{]0,+\infty[} f_{\alpha} = \int_{]0,+\infty[} |f_{\alpha}|$ diverge

Pour b > 0, posons

$$\begin{split} F(b) &= \int_{1}^{b} \frac{x \ln x}{(1+x^{2})^{2}} dx \\ &= \int_{a}^{b} \frac{x}{(1+x^{2})^{2}} \ln x dx \\ &= \left[-\frac{1}{2(1+x^{2})} \ln x \right]_{1}^{b} - \int_{a}^{b} -\frac{1}{2(1+x^{2})} \frac{1}{x} dx \text{ par intégration par parties} \\ &= \left[-\frac{1}{2(1+x^{2})} \ln x \right]_{1}^{b} - \int_{1}^{b} -\frac{1}{2x^{2}(1+x^{2})} x dx \\ &= \left[-\frac{1}{2(1+x^{2})} \ln x \right]_{a}^{b} - \int_{1}^{b^{2}} -\frac{1}{4u(1+u)} du \text{ par changement de variable de classe } \mathcal{C}^{1} : u = x^{2}, \ du = 2x dx \\ &= \left[-\frac{1}{2(1+x^{2})} \ln x \right]_{1}^{b} + \int_{1}^{b^{2}} \frac{1}{4} (\frac{1}{u} - \frac{1}{u+1}) du \\ &= -\frac{\ln b}{2(1+b^{2})} + \frac{1}{4} \ln \frac{b^{2}}{b^{2}+1} + C \end{split}$$

où C est une constante.

$$\lim_{b \to +\infty} F(b) = C$$

car $\frac{\ln b}{1+b^2} \sim \frac{\ln b}{b^2}$ quand $b \to +\infty$.

$$F(b) = (-\frac{1}{2(1+b^2)} + \frac{1}{2}) \ln b - \frac{1}{4} \ln(b^2+1) + C = \frac{b^2 \ln b}{2(1+b^2)} - \frac{1}{4} \ln(b^2+1) + C \to C$$

quand $b \to 0$. Donc $\int_0^\infty f_2 = \lim_{\infty} F - \lim_0 F = 0$.

On pouvait aussi établir ce résultat en prouvant que l'intégrale est égale à son opposé en utilisant le changement de variable $x = \frac{1}{u}, dx = -\frac{du}{u^2}$.

Exercice 2

1) Soit n un entier non nul.

La fonction $f_n: x \mapsto \sin(2nx)\cot(x) = \frac{\sin(2nx)\cos(x)}{\sin x}$ est continue sur $]0, \frac{\pi}{2}]$. De plus, $f_n(x) \underset{x \to 0}{\sim} \frac{2nx}{n} = 2n$.

La fonction est ainsi prolongeable par continuité en 0 (ou $f_n(x) = O(1)$) donc $u_n = \int_0^{\frac{\pi}{2}} f_n(x) dx$ converge.

De même $x \mapsto \frac{\sin(2nx)}{x}$ est prolongeable par continuité en 0 donc l'intégrale $v_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2nx)}{x} dx$ converge.

2) Soit n un entier non nul

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{2}} \frac{(\sin(2(n+1)x) - \sin(2nx))\cos(x)}{\sin x} dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \frac{\sin(x)\cos((2n+1)x)\cos(x)}{\sin x} dx$$

$$= \int_0^{\frac{\pi}{2}} \cos((2n+2)x) + \cos(2nx) dx$$

$$= \left[\frac{\sin((2n+2)x)}{2n+2} + \frac{\sin(2nx)}{2n} \right]_0^{\frac{\pi}{2}} = 0$$

On en déduit que $u_{n+1} = u_n$. Donc u_n ne dépend pas de n.

3) On considère sur $]0, \frac{\pi}{2}]$ la fonction $h: x \mapsto \cot(x) - \frac{1}{x}$

a) Pour $x \neq 0$,

$$h(x) = \frac{x \cos x - \sin x}{x \sin x} = \frac{x - \frac{x^3}{2} - x + \frac{x^3}{6} + o(x^3)}{x^2 + o(x^2)} \underset{x \to 0}{\sim} -\frac{x}{3}$$

La fonction h se prolonge donc par continuité en posant h(0) = 0.

b) La fonction h est de classe \mathscr{C}^1 sur $]0,\frac{\pi}{2}].$ De plus elle est continue en 0. Pour $x\neq 0,$

$$h'(x) = -\frac{1}{\sin^2 x} + \frac{1}{x^2} = \frac{\sin^2 x - x^2}{x^2 \sin^2 x} \sim \frac{-\frac{x^4}{3}}{x^4} \xrightarrow[x \to 0]{} -\frac{1}{3}.$$

La dérivée h' tend donc vers $-\frac{1}{3}$ en 0 donc, par le théorème de limite de la dérivée, h est dérivable en 0, $h'(0) = -\frac{1}{3}$ et donc h est une fonction de classe \mathscr{C}^1 sur $[0, \frac{\pi}{2}]$.

4) Soit f une fonction de classe \mathscr{C}^1 sur $[0,\frac{\pi}{2}]$. Par intégration par parties, pour p>0:

$$I_p = \int_0^{\frac{\pi}{2}} f(x) \sin(px) dx = \left[-f(x) \frac{\cos(px)}{p} \right]_0^{\frac{\pi}{2}} + \frac{1}{p} \int_0^{\frac{\pi}{2}} f'(x) \cos(px) dx$$

Maintenant, f et f' sont continues sur le segment $[0, \frac{\pi}{2}]$ donc elles sont bornées. Il existe donc des réels positifs M et M' tels que

$$\forall x \in [0, \frac{\pi}{2}], |f(x)| \leqslant M \text{ et } |f'(x)| \leqslant M'.$$

On a alors,

$$|I_p| \leqslant \frac{2M}{p} + \frac{\pi M'}{2p}.$$

On en déduit par encadrement que

$$\lim_{p \to \infty} \int_0^{\frac{\pi}{2}} f(x) \sin(px) = 0.$$

En appliquant ce résultat à la fonction h, on en déduit que la suite $(u_n - v_n)$ converge vers 0.

5) a) La fonction $\varphi: x \mapsto \frac{\sin x}{x}$ est continue sur $]0, +\infty[$.

 $\varphi(x) \underset{x \to 0}{\sim} \frac{x}{x} = 1$ donc $\varphi(x) = \underset{x \to 0}{O}(1)$ et ainsi φ est intégrable au voisinage de zéro.

Pour tout X > 0, $\int_1^X \varphi(x) dx = \left[\frac{-\cos x}{x}\right]_1^X - \int_1^X \frac{\cos x}{x^2} dx = \frac{-\cos X}{X} + \cos 1 + cte + \sum_{X \to \infty}^o (1)$ car puisque $\frac{\cos x}{x^2} = \sum_{x \to \infty}^o (\frac{1}{x^2})$, l'intégrale $\int_1^\infty \frac{\cos x}{x^2} dx$ converge absolument donc converge.

$$\text{Comme } \frac{-\cos X}{X} = \mathop{O}_{X \to \infty} \left(\frac{1}{X}\right) \underset{X \to \infty}{\to} 0, \int_{1}^{X} \varphi(x) dx \underset{X \to \infty}{\to} \cos 1 + cte, \text{ donc } \int_{1}^{\infty} \varphi(x) dx \text{ converge.}$$

Ainsi $\int_{0}^{\infty} \varphi(x)dx$ converge.

b) Pour tout $n \in \mathbb{N}^*$, $v_n = v_n - u_n + u_n = v_n - u_n + u_1$ d'après la question 2. On en déduit en utilisant 4) que la suite (v_n) converge vers u_1 . Maintenant

$$u_1 = \int_0^{\frac{\pi}{2}} \sin(2x) \cot(x) dx = \int_0^{\frac{\pi}{2}} 2 \cos^2(x) dx = \int_0^{\frac{\pi}{2}} \left(1 + \cos(2x)\right) dx = \frac{\pi}{2}.$$

De plus en faisant le changement de variable u=2nx dans v_n on obtient

$$v_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2nx)}{x} dx = \int_0^{n\pi} \frac{\sin(u)}{u} du.$$

Comme $\int_0^\infty \frac{\sin u}{u} du$ converge et comme $n\pi \to +\infty$, la suite (v_n) converge vers la valeur de cette intégrale.

Par unicité de la limite de (v_n) ,

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

6) Calculons pour commencer $\int_0^{+\infty} \frac{\sin^2(x)}{x^2} dx$.

Commençons par remarquer que la fonction $\theta: x \mapsto \frac{\sin^2(x)}{x^2}$ est prolongeable par continuité en 0 en posant $\theta(0) = 1$. On considère donc une fonction continue sur $[0, +\infty[$. De plus, pour $x \geqslant 1$, $|\theta(x)| \leqslant \frac{1}{x^2}$. On en déduit, en comparant avec l'intégrale $\int_1^{+\infty} \frac{dx}{x^2}$, que l'intégrale $\int_0^{+\infty} \frac{\sin^2(x)}{x^2} dx$ converge. On réalise alors une intégration par parties :

$$\int_0^{+\infty} \frac{\sin^2(x)}{x^2} dx = \left[-\frac{\sin^2(x)}{x} \right]_0^{+\infty} + \int_0^{+\infty} \frac{2\cos(x)\sin(x)}{x} dx$$

où le crochet converge et vaut 0 car $\left|\frac{\sin^2(x)}{x}\right| \leqslant \frac{1}{x}$ et donc $\lim_{x \to +\infty} \frac{\sin^2(x)}{x} = 0$ et que $\frac{\sin^2(x)}{x} \sim \frac{x^2}{x} \sim x$. En particulier, l'intégrale de droite de l'égalité converge. Maintenant, on a

$$\int_{0}^{+\infty} \frac{2\cos(x)\sin(x)}{x} dx = \int_{0}^{+\infty} \frac{\sin(2x)}{x} dx = \frac{1}{2} \int_{0}^{+\infty} \frac{\sin(u)}{\frac{u}{2}} du = \int_{0}^{+\infty} \frac{\sin(u)}{u} du$$

où on a réalisé le changement de variable x = 2u

Finalement,
$$\int_0^{+\infty} \frac{\sin^2(x)}{x^2} dx = \int_0^{+\infty} \frac{\sin(u)}{u} du = \frac{\pi}{2}$$

Calculons maintenant $\int_0^{+\infty} \frac{\sin^3(x)}{x^3} dx$.

On remarque de même que la fonction $\phi: x \mapsto \frac{\sin^3(x)}{x^3}$ est prolongeable par continuité en 0 en posant $\phi(0) = 1$. On considère donc une fonction continue sur $[0, +\infty[$. De plus, pour $x \geqslant 1$, $|\phi(x)| \leqslant \frac{1}{x^3}$. On en déduit, en comparant avec l'intégrale $\int_1^{+\infty} \frac{dx}{x^3}$, que l'intégrale $\int_0^{+\infty} \frac{\sin^3(x)}{x^3} dx$ converge. On réalise alors une intégration par parties :

$$\int_{0}^{+\infty} \frac{\sin^{3}(x)}{x^{3}} dx = \left[-\frac{1}{2} \frac{\sin^{3}(x)}{x^{2}} \right]_{0}^{+\infty} + \frac{1}{2} \int_{0}^{+\infty} \frac{3 \cos(x) \sin^{2}(x)}{x^{2}} dx$$

où le crochet converge et vaut 0 car $\left|\frac{\sin^3(x)}{x^2}\right| \leqslant \frac{1}{x^3}$ et donc $\lim_{x \to +\infty} \frac{\sin^3(x)}{x^2} = 0$ et que $\frac{\sin^3(x)}{x^2} \underset{x \to 0}{\sim} \frac{x^3}{x^2} \underset{x \to 0}{\sim} x$.

En particulier, l'intégrale de droite de l'égalité converge. Maintenant, en intégrant de nouveau par parties, on a

$$\frac{1}{2} \int_0^{+\infty} \frac{3\cos(x)\sin^2(x)}{x^2} dx = \frac{1}{2} \left[-\frac{3\cos(x)\sin^2(x)}{x} \right]_0^{+\infty} + \frac{3}{2} \int_0^{+\infty} \frac{-\sin^3(x) + 2\cos^2(x)\sin(x)}{x} dx$$

Là encore, le crochet converge et vaut 0 par des calculs similaires aux précédents. Cela montre que l'intégrale de droite converge. En utilisant que $\cos^2(x) = 1 - \sin^2(x)$, cette dernière vaut alors

$$\frac{3}{2} \int_0^{+\infty} \frac{2\sin(x) - 3\sin^3(x)}{x} dx$$

On peut alors linéariser $\sin^3(x)$:

$$\sin^3(x) = -\frac{1}{4} \left(\sin(3x) - 3\sin(x) \right)$$

On obtient alors

$$\int_0^{+\infty} \frac{\sin^3(x)}{x^3} dx = \frac{3}{2} \int_0^{+\infty} \frac{3\sin(x) + \frac{3}{4}\left(\sin(3x) - 3\sin(x)\right)}{x} dx = \frac{3}{8} \left(3 \int_0^{+\infty} \frac{\sin(3x)}{x} dx - \int_0^{+\infty} \frac{\sin(x)}{x} dx\right)$$

En utilisant le changement de variable u = 3x dans la première des deux intégrales de droite, on obtient

$$\int_0^{+\infty} \frac{\sin(3x)}{x} dx = \frac{1}{3} \int_0^{+\infty} \frac{\sin(u)}{\frac{u}{3}} du = \int_0^{+\infty} \frac{\sin(u)}{u} du$$

Finalement,
$$\int_0^{+\infty} \frac{\sin^3(x)}{x^3} dx = \frac{3}{4} \int_0^{+\infty} \frac{\sin(u)}{u} du = \frac{3\pi}{8}$$