Exercice

1) a) Par intégration par parties (les applications en questions sont de classe \mathscr{C}^1 sur [2,x] si

$$\int_{2}^{x} \frac{1}{\ln t} dt = \left[\frac{t}{\ln t} \right]_{2}^{x} - \int_{2}^{x} t \cdot \left(-\frac{1}{t} \right) \frac{1}{(\ln t)^{2}} dt = \frac{x}{\ln x} - \frac{2}{\ln 2} + R_{0}(x) \text{ avec } R(x) = \int_{2}^{x} \frac{1}{(\ln t)^{2}} dt.$$
On pero done $\left[x - \frac{1}{t} \right]_{2}^{x} = \frac{1}{(\ln t)^{2}} dt = \frac{x}{(\ln t)^{2}} + \frac{2}{(\ln t)^{2}} dt = \frac{x}{(\ln t)^{2}} + \frac{1}{(\ln t)^{2}} dt.$

On pose donc $\left| g_0 = t \mapsto \frac{1}{(\ln t)^2} \right|$ et $\left| c_0 = -\frac{2}{\ln 2} \right|$

b) $\frac{1}{(\ln x)^2} = \frac{1}{\ln x} \cdot \frac{1}{\ln x} = o_{x \to +\infty} \left(\frac{1}{\ln(x)} \right)$.

Or $\frac{1}{x} = \underset{x \to +\infty}{o} \left(\frac{1}{\ln(x)} \right)$ et $x \longmapsto \frac{1}{x}$ est une fonction non intégrable sur $[2, +\infty[$, donc il en est de même de $x \mapsto \frac{1}{\ln(x)}$ (les fonctions sont continues et positives).

Ainsi, par la propriété intégration des relations de comparaison (cas des intégrales divergentes de fonctions positives) $R_0(x) = \int_2^x \frac{1}{(\ln t)^2} dt = \int_0^x \frac{1}{x + \infty} \left(\int_2^x \frac{1}{\ln t} dt \right).$

c) Comme $x \mapsto \frac{1}{\ln(x)}$ est positive et non intégrable, $\lim_{x \to +\infty} \int_2^x \frac{1}{\ln t} dt = +\infty$,

donc
$$-\frac{2}{\ln 2} = \underset{x \to +\infty}{o} \left(\int_{2}^{x} \frac{1}{\ln t} dt \right).$$

Ainsi, par les deux questions précédentes, $\int_{2}^{x} \frac{1}{\ln t} dt = \frac{x}{\ln x} + o_{x \to +\infty} \left(\int_{1}^{x} \frac{1}{\ln t} dt \right)$.

Finalement : $\left| \int_{2}^{x} \frac{1}{\ln t} dt \underset{x \to +\infty}{\sim} \frac{x}{\ln x} \right|$.

2) a) On réintègre par parties $\int_2^x \frac{dt}{(\ln t)^2}$; les fonctions sont de classe \mathscr{C}^1 .

$$\int_{2}^{x} \frac{1}{(\ln t)^{2}} dt = \left[\frac{t}{(\ln t)^{2}} \right]_{2}^{x} - \int_{2}^{x} t \left(-\frac{1}{t} \right) \frac{2}{(\ln t)^{3}} dt$$
$$= \frac{x}{(\ln x)^{2}} - \frac{2}{(\ln 2)^{2}} + \int_{2}^{x} \frac{2}{(\ln t)^{3}} dt$$

Ce qui donne

$$\int_{1}^{x} \frac{1}{\ln t} dt = \sum_{k=0}^{1} \frac{k!x}{(\ln x)^{k+1}} + c_1 + R_1(x)$$

où
$$c_1 = -\frac{2}{\ln 2} - \frac{2}{(\ln 2)^2}$$
 et $R_1(x) = \int_1^x g_1(t)dt$ avec $g_1: t \mapsto \frac{2}{(\ln t)^3}dt$.

Procédons donc par récurrence. On pose pour tout entier n, le prédicat $\mathcal{P}(n)$ suivant :

$$\mathscr{P}(n): \int_{2}^{x} \frac{1}{\ln t} dt = \sum_{k=0}^{n} \frac{k!x}{(\ln(x))^{k+1}} + c_n + \int_{2}^{x} g_n(t) dt \text{ où } g_n: t \mapsto \frac{(n+1)!}{(\ln t)^{n+2}} \text{ et } c_n = -2 \sum_{k=0}^{n} \frac{k!}{(\ln 2)^{k+1}}.$$

— Initialisation. Le cas k = 0 a été fait à la question 1.a; le cas k = 1 ci-dessus.

— Hérédité. Soit $n \in \mathbb{N}^*$, on suppose $\mathscr{P}(n-1)$ et on veut montrer $\mathscr{P}(n)$. On procède encore à une intégration par partie de $R_{n-1}(x)$:

$$\int_{2}^{x} \frac{n!}{(\ln t)^{n+1}} dt = \left[\frac{n! \cdot t}{(\ln t)^{n+1}} \right]_{2}^{x} - \int_{2}^{x} n! \cdot t \cdot \left(-\frac{1}{t} \right) \frac{n+1}{(\ln t)^{n+2}} dt$$
$$= \frac{n! \cdot x}{(\ln x)^{n+1}} - \frac{n! \cdot 2}{(\ln 2)^{n+1}} + \int_{2}^{x} \frac{(n+1)!}{(\ln t)^{n+2}} dt$$

On en déduit que

$$\int_{2}^{x} \frac{1}{\ln t} dt = \sum_{k=0}^{n-1} \frac{k!x}{(\ln(x))^{k+1}} + c_{n-1} + \int_{2}^{x} \frac{n!}{(\ln t)^{n+1}} dt$$

$$= \sum_{k=0}^{n-1} \frac{k!x}{(\ln(x))^{k+1}} + c_{n-1} + \frac{n! \cdot x}{(\ln x)^{n+1}} - \frac{n! \cdot 2}{(\ln 2)^{n+1}} + \int_{2}^{x} \frac{(n+1)!}{(\ln t)^{n+2}} dt$$

$$= \sum_{k=0}^{n} \frac{k!x}{(\ln(x))^{k+1}} + c_n + \int_{2}^{x} g_n(t) dt$$

οù

$$c_n = c_{n-1} - \frac{n! \cdot 2}{(\ln 2)^{n+1}} = -2\sum_{k=0}^{n-1} \frac{k!}{(\ln 2)^{k+1}} - \frac{n! \cdot 2}{(\ln 2)^{n+1}} = -2\sum_{k=0}^{n} \frac{k!}{(\ln 2)^{k+1}}$$

et

$$g_n: t \mapsto \frac{(n+1)!}{(\ln t)^{n+2}}$$

- Conclusion : $\forall n \in \mathbb{N}, \mathscr{P}(n)$.
- b) On procède exactement comme en 1.b):

$$\frac{1}{(\ln x)^{n+3}} = \frac{1}{\ln x} \cdot \frac{1}{(\ln x)^{n+2}} = o_{x \to +\infty} \left(\frac{1}{(\ln x)^{n+2}}\right).$$

Or $\frac{1}{x} = \underset{x \to +\infty}{o} \left(\frac{1}{(\ln x)^{n+2}} \right)$ et $x \longmapsto \frac{1}{x}$ est une fonction non intégrable sur $[2, +\infty[$, donc il en est de même de $x \longmapsto \frac{1}{(\ln x)^{n+2}}$ (les fonctions sont continues et positives).

Ainsi, par la propriété intégration des relations de comparaison (cas des intégrales divergentes de fonctions positives) $\int_2^x \frac{1}{(\ln t)^{n+3}} dt = \int_{x \to +\infty}^x \left(\int_2^x \frac{1}{(\ln t)^{n+2}} dt \right).$ Comme (n+1)! et (n+2)! sont constantes, $R_{n+1}(x) = \int_{x \to +\infty}^x (R_n(x)) dx$

c) En reprenant l'intégration par parties faite dans l'hérédité de la récurrence de la question 2.a) (et en décalant de 1 les indices) :

$$R_n(x) = \int_2^x \frac{(n+1)!}{(\ln t)^{n+2}} dt = \frac{(n+1)! \cdot x}{(\ln x)^{n+2}} - \frac{(n+1)! \cdot 2}{(\ln 2)^{n+2}} + R_{n+1}(x)$$

On a vu que $R_{n+1}(x) = \underset{x \to +\infty}{o}(R_n(x))$, de plus $\frac{(n+1)! \cdot 2}{(\ln 2)^{n+2}}$ est une constante alors que $R_n(x)$

tend vers $+\infty$ quand x tend vers $+\infty$ car $\frac{1}{t} = o\left(\frac{1}{(\ln t)^{n+2}}\right)$ donc $R_n(x) \underset{x \to +\infty}{\sim} \frac{(n+1)! \cdot x}{(\ln x)^{n+2}}$

d) On en déduit que $R_n(x) \underset{x \to +\infty}{\sim} \frac{(n+1)! \cdot x}{(\ln x)^{n+2}} = o_{x \to +\infty} \left(\frac{x}{(\ln x)^{n+1}}\right)$.

Finalement:

$$\int_{2}^{x} \frac{1}{\ln t} dt = \sum_{k=0}^{n} \frac{k!x}{(\ln x)^{k+1}} + o_{x \to +\infty} \left(\frac{x}{(\ln x)^{n+1}} \right)$$

Problème

Partie I - Exemple I

- 1) On sait que la fonction Arctangente est définie, de classe \mathscr{C}^1 sur \mathbb{R}^+ et vérifie Arctan(0)=0donc $f \in E_0$. De plus $\lim_{t\to 0^+} \frac{f(t)}{t} = f'(0) = 1$ d'où la fonction $g: t \mapsto \left(\frac{f(t)}{t}\right)^2$ est prolongeable par continuité en 0 et $0 \leqslant g(t) \sim_{+\infty} \frac{\pi^2}{4t^2}$, donc la fonction g est intégrable sur \mathbb{R}_+^* et donc
- 2) Pour tout x > 0, la fonction $H_x : t \mapsto \frac{1}{(t^2 + 1)(t^2 + x^2)}$ est positive et continue sur \mathbb{R}^+ avec $H_x(t) \leqslant \frac{1}{x^2(1+t^2)}$, cette dernière fonction est intégrable sur $[1, +\infty[$ pour tout x > 0 donc pour tout x > 0, H_x est intégrable sur \mathbb{R}^+ . On remarque que $\forall t \in \mathbb{R}^+$, $(f'(t))^2 = H_1(t)$ donc $| f \in E_2 |$.
- 3) a) On considère la fonction φ définie sur $]1,+\infty[$ par $\varphi:u\mapsto \int_{\mathbb{R}^*}H_u(t)dt.$ On va appliquer la version continue du théorème de convergence dominée par calculer $\lim_{u\to 1^+} \varphi(u)$.

 — Pour tout $u\in]1,+\infty[$, $t\mapsto H_u(t)$ est continue par morceaux sur \mathbb{R}_+^* .

 - Pour tout $t \in \mathbb{R}_+^*$, $\lim_{u \to 1^+} H_u(t) = \frac{1}{(tr+1)^2} = H_1(t)$ et $t \mapsto H_1(t)$ est continue par morceaux sur \mathbb{R}^*_{\perp} .
 - Domination: pour tout $t \in \mathbb{R}_+^*$ et tout $u \in]1, +\infty[$,

$$|H_u(t)| = \frac{1}{(t^2+1)(t^2+u^2)} \le \frac{1}{1+t^2}$$

Or $\psi: t \mapsto \frac{1}{1+t^2}$ est continue sur $[0, +\infty[$ et $\frac{1}{1+t^2} \sim_{+\infty} \frac{1}{t^2}$ donc ψ est intégrable sur

D'après le théorème de convergence dominée,

$$\lim_{u \to 1^+} \varphi(u) = \lim_{u \to 1^+} \int_{\mathbb{R}^*_{\perp}} H_u(t) dt = \int_{\mathbb{R}^*_{\perp}} H_1(t) dt = \varphi(1)$$

b) Soit $x \in \mathbb{R}_+^*$, $x \neq 1$, par décomposition en éléments simples (deux pôles simples $:-1, -x^2$)

$$\frac{1}{(T+1)(T+x^2)} = \boxed{\frac{1}{x^2-1} \left(\frac{1}{T+1} - \frac{1}{T+x^2}\right)}$$

c) D'après la décomposition en éléments simples précédente, pour $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\forall t \in \mathbb{R}^+, H_x(t) = \frac{1}{x^2 - 1} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right)$$

On en déduit que pour tout $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\varphi(x) = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right) dt = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{x} \frac{1/x}{1 + (t/x)^2} \right) dt$$

$$\varphi(x) = \frac{1}{x^2 - 1} \lim_{b \to +\infty} \left[\arctan(t) - \frac{1}{x} \arctan(\frac{t}{x}) \right]_0^b = \frac{1}{x^2 - 1} \left(\frac{\pi}{2} - \frac{\pi}{2x} \right) = \boxed{\frac{\pi}{2x(1+x)}}$$

d) Par définition de
$$N_2(f)$$
 avec $(f'(t))^2 = H_1(t)$ on a : $N_2(f) = \sqrt{\varphi(1)}$ d'après la question 3.a) on aura : $N_2(f) = \sqrt{\lim_{x \to 1^+} \varphi(x)} = \frac{\sqrt{\pi}}{2}$.

4) Pour tout
$$x \in \mathbb{R}_+$$
, la fonction $G_x : t \mapsto \frac{\arctan(xt)}{t(t^2+1)}$ est positive et continue sur \mathbb{R}_+^* avec $G_x(t) \sim_0 x$ et $G_x(t) \sim_{+\infty} \frac{\pi}{2t^3}$, on en déduit que pour tout $x \in \mathbb{R}^+$, G_x est intégrable sur \mathbb{R}_+^* .

5) Calcul de
$$N_1(f)$$
.
Pour $x \in \mathbb{R}^+$, on pose $\theta(x) = \int_{\mathbb{R}^*} G_x(t)dt$ et $G: (x,t) \in \mathbb{R}^+ \times \mathbb{R}^*_+ \mapsto G_x(t)$.

a) D'après la formule admise,
$$\forall x \in \mathbb{R}^+, \theta'(x) = \int_0^{+\infty} \frac{1}{(1+t^2)(1+x^2t^2)} dt$$
.
Pour $x > 0$, on aura donc $\theta'(x) = \frac{1}{x^2} \int_0^{+\infty} H_{\frac{1}{x}}(t) dt = \frac{1}{x^2} \varphi\left(\frac{1}{x}\right) = \boxed{\frac{\pi}{2(x+1)}}$ d'après le résultat de la question 3b.

Par continuité en 0 de θ' , la formule est encore vraie pour x=0.

b) On déduit du résultat précédent que pour tout
$$x \in \mathbb{R}^+$$
,
$$\theta(x) = \theta(0) + \frac{\pi}{2} \ln(1+x) = \boxed{\frac{\pi}{2} \ln(1+x)}.$$

c)
$$N_1^2(f) = \int_0^{+\infty} \frac{f^2(t)}{t^2} dt$$
. Par intégration par parties avec $f(t) = \arctan(t)$, on aura :

$$\int_{0}^{+\infty} \frac{f^{2}(t)}{t^{2}} dt = \left[-\frac{f^{2}(t)}{t} \right]_{0}^{+\infty} + \int_{0}^{+\infty} \frac{2f'(t)f(t)}{t} dt$$

où le crochet converge car $\lim_{t\to 0^+} \frac{f^2(t)}{t} = \lim_{t\to 0^+} \arctan(t) \frac{\arctan(t)}{t} = 0$ et $\lim_{t\to +\infty} \frac{\arctan^2(t)}{t} = 0$, on en déduit que :

$$N_1^2(f) = \int_0^{+\infty} \frac{2 \arctan(t)}{t(1+t^2)} dt = 2\theta(1) = \pi \ln(2)$$

d) On en déduit que
$$N_1(f) = \sqrt{\pi \ln(2)}$$
 et donc $\frac{N_1(f)}{N_2(f)} = 2\sqrt{\ln(2)}$.

Partie II - Exemple 2

- 6) f est clairement dérivable sur \mathbb{R}^+ et on a : $\forall t \in \mathbb{R}^+$, $f'(t) = \frac{1}{\sqrt{1+t^2}}$. On en déduit que f' est continue sur \mathbb{R}^+ et f'^2 est intégrable sur \mathbb{R}^+ (car équivalente à $t \mapsto \frac{1}{t^2}$ à l'infini) donc $f \in E_2$. De plus $N_2(f) = \sqrt{\frac{\pi}{2}}$.
- 7) Pour t au voisinage de 0, on a (par développement limité à l'ordre 1 au voisinage de 0 de $\sqrt{1+t^2}$) : $\ln(t+\sqrt{1+t^2}) = \ln(1+t+o(t)) = t+o(t)$ alors $f(t) \sim_0 t$. On a aussi au voisinage de $+\infty$:

$$f(t) = \ln(t) + \ln(1 + \sqrt{1 + 1/t^2}) = \ln(t) + \ln(2 + o(1)) = \ln(t) + O(1)$$

on en déduit que $f(t) \sim_{+\infty} \ln(t)$.

- 8) D'après les équivalents précédents, $t \in \mathbb{R}_+^* \mapsto \frac{f^2(t)}{t^2}$ est prolongeable par continuité en 0 et $\frac{f^2(t)}{t^2} =_{+\infty} o\left(\frac{1}{t^{3/2}}\right)$ et donc $f \in E_1$.
- 9) Calcul d'une intégrale.
 - a) La fonction $h: t \mapsto -\frac{\ln(t)}{1-t^2}$ est continue, positive sur]0,1[et est prolongeable par continuité en 1 (de limite égale à 1/2). De plus au voisinage de 0, on a : $h(t) = o(1/\sqrt{t})$ et donc [h] est intégrable sur]0,1[.

On note désormais
$$J = \int_{[0,1]} \frac{-\ln t}{1-t^2} dt$$
.

b) Pour tout $k \in \mathbb{N}$, $f_k : t \mapsto -t^{2k} \ln(t)$ est continue et positive sur]0,1] avec $f_k(t) = o(1/\sqrt{t})$ au voisinage de 0, on en déduit que pour tout $k \in \mathbb{N}$, les fonctions f_k sont intégrables sur]0,1[. Par intégration par parties,

$$\int_0^1 -t^{2k} \ln(t) dt = \left[-t^{2k+1} \ln(t) / (2k+1) \right]_0^1 + \int_0^1 \frac{t^{2k}}{2k+1} dt$$

car le crochet converge. Donc : $J_k = \frac{1}{(2k+1)^2}$

c) Pour tout $k \in \mathbb{N}$, les fonctions f_k sont continues et intégrables sur]0,1[, la série de fonctions $\sum f_k$ converge simplement sur]0,1[vers $h:t\in]0,1[\mapsto -\frac{\ln(t)}{1-t^2},$ la série $\sum \int_{]0,1[}|f_k|=\sum J_k$ converge donc h est intégrable sur]0,1[et

$$J = \int_0^1 h(t)dt = \sum_{k=0}^{+\infty} \int_0^1 f_k(t)dt = \left[\sum_{k=0}^{+\infty} J_k\right].$$

d) On a:

$$\frac{\pi^2}{6} = \lim_{N \to \infty} \sum_{n=1}^{2N+1} \frac{1}{n^2} = \lim_{N \to \infty} \left(\sum_{k=1}^{N} \frac{1}{(2k)^2} + \sum_{k=0}^{N} \frac{1}{(2k+1)^2} \right) = \sum_{k=1}^{+\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6} - \frac{1}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{8}$$

$$\xrightarrow{+\infty} \qquad \qquad 1 \qquad \qquad \boxed{\pi^2}$$

On en déduit que
$$J = \sum_{k=0}^{+\infty} J_k = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \boxed{\frac{\pi^2}{8}}.$$

10) Calcul de $N_1(f)$.

Pour simplifier, on note $I = (N_1(f))^2 = \int_{\mathbb{R}_+} \left(\frac{f(t)}{t}\right)^2 dt$.

a) On a par intégration par parties :

$$\int_{0}^{+\infty} \frac{f^{2}(t)}{t^{2}} dt = \left[-\frac{f^{2}(t)}{t} \right]_{0}^{\infty} + \int_{0}^{\infty} \frac{2f'(t)f(t)}{t} dt$$

car le crochet converge : on a déjà vu : $t \mapsto \frac{f(t)}{t}$ est prolongeable par continuité en 0 donc

$$\lim_{a\to 0^+}\frac{f^2(t)}{t}=\lim_{a\to 0^+}t\left(\frac{f(t)}{t}\right)^2=0, \text{ on avait aussi (voir question 7)}:$$

$$f(t) \underset{+\infty}{\sim} \ln(t)$$
 et donc $\frac{f^2(t)}{t} \underset{+\infty}{\sim} \frac{\ln^2(t)}{t}$ et donc $\lim_{t \to +\infty} \frac{f^2(t)}{t} = 0$.

On en déduit que :

$$I = 2 \int_0^\infty \frac{f'(t)f(t)}{t} dt = 2 \int_0^\infty \frac{f(t)}{t\sqrt{1+t^2} dt}$$

b) La fonction f est continue et strictement croissante sur \mathbb{R}_+^* (car f' > 0) donc réalise une bijection de $]0, +\infty[$ vers $]\lim_0 f, \lim_\infty f[=]0, \infty[$.

Soit $t \ge 0$ et u = f(t).

On a
$$e^u = t + \sqrt{t^2 + 1}$$
 et $e^{-u} = \frac{t - \sqrt{t^2 + 1}}{t^2 - (t^2 + 1)} = \sqrt{t^2 + 1} - t$ d'où

$$sh(u) = \frac{e^u - e^{-u}}{2} = t = f^{-1}(u)$$

c) Pour le calcul de I, on effectue le changement de variable u=f(t) sachant que f est de classe \mathscr{C}^1 et strictement croissante

$$I = 2 \int_0^\infty \frac{f(t)f'(t)dt}{t} = 2 \int_0^{+\infty} \frac{udu}{\sinh(u)}$$

d)
$$I = 4 \int_{0}^{\infty} \frac{u \, du}{e^{u} - e^{-u}} = 4 \int_{0}^{\infty} \frac{u e^{-u} du}{1 - e^{-2u}}$$

On effectue alors dans I le changement de variable $v=e^{-u},\ dv=-e^{-u}du$ avec $\psi:u\mapsto v$ de classe \mathscr{C}^1 , strictement décroissante et bijective de $]0,+\infty[$ dans]0,1[. Ainsi :

$$I = 4 \int_{1}^{0} -\frac{(-\ln(v))(-dv)}{1-v^2} = 4J = \frac{\pi^2}{2}$$

On en déduit que
$$N_1(f) = \sqrt{I} = \frac{\pi}{\sqrt{2}}$$
 et $\frac{N_1(f)}{N_2(f)} = \sqrt{\pi}$.

Partie III

- 11) Soit f une fonction quelconque appartenant à E_0 . On associe à f deux fonctions g et h définies sur \mathbb{R}_+^* par $g(t) = \frac{f(t)}{\sqrt{t}}$ et $h(t) = \frac{f(t)}{t}$ pour tout t > 0. On pose $\alpha = f'(0)$.
 - a) f est dérivable sur \mathbb{R}^+ avec f(0) = 0 donc f(t) = f(t) f(0) et donc h est prolongeable par continuité en 0 avec $\lim_{t \to 0^+} h(t) = f'(0) = \alpha$. On a : $g(t) = \sqrt{t}h(t)$ et donc $\lim_{t \to 0^+} g(t) = 0$.
 - b) On vérifie aisément par dérivation d'un quotient que :

$$\forall t > 0, \sqrt{t}g'(t) = f'(t) - \frac{1}{2}h(t).$$

- c) On déduit des questions précédentes, par continuité de f' en 0, que $\lim_{t\to 0^+} \sqrt{t}g'(t) = \boxed{\frac{\alpha}{2}}$, de plus $g(t)g'(t) = h(t)\sqrt{t}g'(t)$, donc $\lim_{t\to 0^+} g(t)g'(t) = \boxed{\frac{\alpha^2}{2}}$.
- d) Des limites calculées précédemment, on obtient que $t \mapsto \sqrt{t}g'(t), t \mapsto g(t)g'(t), t \mapsto h(t)$ sont prolongeables par continuité en 0^+ , or elles sont aussi continues sur \mathbb{R}_+^* , donc pour tout x > 0, ces trois fonctions sont intégrables sur]0, x]. On a aussi $f'^2(t) = g(t)g'(t) + (\sqrt{t}g'(t))^2 + \frac{1}{4}h^2(t)$ alors si $f \in E_2$, f'^2 est intégrable sur \mathbb{R}_+^* et donc sur [0, x] pour tout x > 0, alors par intégration sur [0, x] et linéarité de l'intégrale, on aura :

$$(R) \int_{]0,x]} (f'(t))^2 dt = \frac{1}{2} (g(x))^2 + \int_{]0,x]} (\sqrt{t}g'(t))^2 dt + \frac{1}{4} \int_{]0,x]} (h(t))^2 dt.$$

car $\int_{]0,x]}(g^2)'=[g^2]_0^x=g^2(x)$ car $\lim_0 g=0$ (cf question a) et car g est de classe \mathcal{C}^1 , donc le théorème fondamental de l'analyse s'applique.

- 12) Comparaison de E_1 et E_2 .
 - a) Par positivité de l'intégrale d'une fonction positive sur un intervalle, la relation (R) entraine :

$$\forall x > 0, \quad \int_{[0,x]} (f'(t))^2 dt \geqslant \frac{1}{4} \int_{[0,x]} (h(t))^2 dt$$

On en déduit que si $f \in E_2$ alors $x \mapsto \int_{]0,x]} (f'(t))^2 dt$ est majorée, ainsi la fonction $x \in \mathbb{R}_+^* \mapsto \int_{]0,x]} (h(t))^2 dt$ est majorée et donc la fonction positive, continue h^2 est intégrable sur \mathbb{R}_+^* . Donc si $f \in E_2$ alors $f \in E_1$, d'où l'inclusion : $E_2 \subset E_1$.

b) Prenons la fonction $f: t \mapsto \sin(t)$, il est clair que $f \in E_0$, de plus $\lim_{t \to 0^+} \frac{f^2(t)}{t^2} = 1$ et $\forall t > 0, \ 0 \leqslant \frac{f^2(t)}{t^2} \leqslant \frac{1}{t^2}$, on en déduit que $f \in E_1$, mais $f'(t) = \cos(t)$ et la fonction positive f'^2 n'est pas intégrable sur \mathbb{R}^+ car $\int_0^x f'^2(t)dt = \int_0^x \frac{1 + \cos 2t}{2} dt = \frac{x}{2} + O(1) \text{ tend vers } +\infty \text{ quand } x \to +\infty.$

$$\int_0^{\infty} \int_0^{\infty} \int_0^$$