Partie I: Matrices compagnons

1. On pose $P = X^3 + X^2 - X - 1$. On a

$$C_P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

On a alors

$$\chi_{C_P} = \begin{vmatrix} X & 0 & -1 \\ -1 & X & -1 \\ 0 & -1 & X + 1 \end{vmatrix} = X^2(X+1) - 1 - X = X^3 + X^2 - X - 1.$$

- 2. Procédons par récurrence sur n.
 - I : Pour n = 1, soit $P = X + a_0$. On a $C_P = (-a_0)$ donc $\chi_{C_P} = |X + a_0| = X + a_0 = P$.
 - C : Soit $n \ge 2$, on suppose la propriété pour les polynômes de degré n-1 et on la montre pour les polynômes de degré n. On a

$$\chi_{C_P} = \begin{vmatrix} X & \cdots & \cdots & 0 & a_0 \\ -1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & X & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix}$$

En développant selon la première ligne on obtient alors

$$\chi_{C_P} = X \begin{vmatrix} X & \cdots & \cdots & 0 & a_1 \\ -1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & X & a_{n-2} \\ 0 & \cdots & 0 & -1 & X + a_{n-1} \end{vmatrix} + (-1)^{n+1} a_0 \begin{vmatrix} -1 & * & \cdots & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & * \\ 0 & \cdots & 0 & -1 \end{vmatrix}$$

En utilisant l'hypothèse de récurrence pour calculer le premier terme on a donc

$$\chi_{C_P} = X(X^{n-1} + a_{n-1}X^{n-2} + \dots + a_2X + a_1) + (-1)^{n+1}a_0(-1)^{n-1} = P.$$

- |C|: La propriété est vraie pour tout entier $n \in \mathbb{N}^*$.

Remarque : On peut aussi faire une démonstration directe (sans récurrence) en développant selon la dernière colonne.

Partie II : Théorème de Cayley-Hamilton

1. (a) Comme p-1 < p, la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre

(b) Si on pose $F = \text{Vect}(x, u(x), \dots, u^{p-1}(x))$. La famille $(x, u(x), \dots, u^{p-1}(x))$ étant libre, c'est une base de F. Maintenant, comme $(u^0(x), u(x), \dots, u^p(x))$ est liée alors $u^p(x) \in F$ et donc il existe $(a_0, \dots, a_{p-1}) \in \mathbb{K}^p$ tels que

$$u^{p}(x) + a_{p-1}u^{p-1}(x) + \dots + a_{1}u(x) + a_{0}x = 0$$

On note $P = X^p + a_{p-1}X^{p-1} + \dots + a_1X + a_0$.

(c) Par définition,

$$u(x) = u(x), u(u(x)) = u^{2}(x), \dots, u(u^{p-2}(x)) = u^{p-1}(x)$$

et

$$u(u^{p-1}(x)) = u^p(x) = -a_{p-1}u^{p-1}(x) - \cdots - a_1u(x) - a_0x.$$

De ce fait, $\mathsf{Mat}_{\mathscr{B}}(u)$ peut s'écrire sous la forme $\left(\begin{array}{c|c} C(P) & * \\ \hline 0 & M \end{array}\right)$.

- (d) Par définition, $P(u)(x) = \sum_{k=0}^{p} a_k u^k(x) = 0$ en posant $a_p = 1$.
- (e) Comme la matrice est triangulaire par blocs,

$$\chi_u = \chi_{C_P}.\chi_M = P.\chi_M.$$

(f) On en déduit que

$$\chi_{u}(u)(x) = (\chi_{M}.P)(u)(x)$$

$$= (\chi_{M}(u) \circ P(u))(x)$$

$$= \chi_{M}(u)(P(u)(x))$$

$$= \chi_{M}(u)(P(u)(x)) = \chi_{M}(0_{E}) = 0_{E}$$

2. Pour x de E, la question 1.f) montre que $\chi_u(u)(x)=0$. On en déduit que $\chi_u(u)=0$ $\mathcal{L}(E)$.