Problème I

Partie I - Convergence au sens d'Abel

- 1) a) On considère $(a_n) = ((-1)^n)_{n \ge 0}$. Pour tout $x \in \mathbb{R}$ la suite $(a_n x^n)$ est bornée si et seulement si $|x| \le 1$. Donc le rayon de convergence est R = 1. La somme est alors donnée par $f_A: x \longmapsto \frac{1}{1+x}$.
 - b) Pour $x \in]-1,1[$, la suite $(-1)^n(n+1)x^n$ tend vers 0 par croissance comparée, elle est donc bornée d'où $R \ge 1$. Par contre, pour x = 1, la suite $(-1)^n(n+1)1^n$ n'est pas bornée d'où $R \le 1$. Cela montre que R = 1.

On a vu ci-dessus, que la somme de la série entière $\sum_{n\geqslant 0}((-1)^nx^n)$ est de classe \mathscr{C}^1 sur]-1,1[.

On peut dériver terme à terme et on obtient que pour tout $x \in]-1,1[$,

$$-\frac{1}{(1+x)^2} = \sum_{n=1}^{+\infty} (-1)^n nx^{n-1} = \sum_{n=0}^{+\infty} (-1)^{n+1} (n+1)x^n$$

En multipliant par -1 on voit que la fonction somme de la série entière $\sum_{n\geq 0} ((-1)^n (n+1)x^n)$ est

donnée par
$$f_A: x \longmapsto \frac{1}{(1+x)^2}$$

c) On considère $(a_n) = \left(\frac{(-1)^n}{(2n)!}\right)$. Pour x > 0, $0 \le |a_n x^n| \le \frac{|x|^n}{(2n)!} \le \frac{|x|^n}{n!} \xrightarrow[n \to +\infty]{} 0$.

En particulier la suite $(a_n x^n)$ est convergente (vers 0) donc elle est bornée. Cela montre que le rayon de convergence est égal à $+\infty$. En notant f sa somme, on a

$$\forall x \in \mathbb{R}_+, \ f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{x})^{2n}}{(2n)!} = \cos(\sqrt{x})$$

$$\forall x \in \mathbb{R}_{-}, \ f(x) = \sum_{n=0}^{\infty} \frac{(\sqrt{-x})^{2n}}{(2n)!} = \text{ch}(\sqrt{-x})$$

- 2) L'ensemble \mathcal{D} est inclus dans l'espace des suites à valeurs réelles, montrons qu'il en est un sous-espace vectoriel.
 - L'ensemble $\mathcal D$ n'est pas vide car la suite nulle en est un élément (le rayon de convergence est infini).
 - Soit (a_n) , (b_n) deux suites de \mathscr{D} , α, β deux réels. On appelle R_1 et R_2 les rayons de convergence respectifs des séries entières $\sum_{n\geqslant 0}(a_nx^n)$ et $\sum_{n\geqslant 0}(b_nx^n)$. On pose $(c_n)=(\alpha a_n+\beta b_n)$. Par opération (combinaison linéaire) sur les séries entières, on sait que $\sum_{n\geqslant 0}(c_nx^n)$ est une série entière de rayon de convergence $R\geqslant \min\{R_1,R_2\}\geqslant 1$, car $R_1\geqslant 1$ et $R_2\geqslant 1$ par hypothèse. Ainsi $(c_n)=\alpha(a_n)+\beta(b_n)$ est dans \mathscr{D} , qui est bien un sous-espace vectoriel.

Montrons maintenant que \mathscr{C} est un sous-espace vectoriel de \mathscr{D} . On sait que l'ensemble des suites telles que la série associée converge est un espace vectoriel. Il suffit donc de montrer que $\mathscr{C} \subset \mathscr{D}$.

Soit $(a_n) \in \mathscr{C}$. La série de terme général $a_n = a_n$ 1^n converge, on a nécessairement $1 \leqslant R$, où R est le rayon de convergence de la série entière $\sum_{n \geqslant 0} (a_n x^n)$. Donc $(a_n) \in \mathscr{D}$.

3) • Le rayon de convergence des séries entières des cas 1) a), b), c) est respectivement 1, 1, $+\infty$, ils sont tous supérieurs à 1.

• La limite en 1⁻ des fonctions sommes des séries entières des cas 1) a), b), c) est respectivement $\frac{1}{2}$, $\frac{1}{4}$, cos(1), elles sont toutes finies.

Donc les trois séries converge au sens d'Abel

• Les deux premières séries sont grossièrement divergentes, la troisième converge et est de somme usuelle $S(A) = \cos(1) = S_{Abel}(A)$ car la série entière converge en tout point de \mathbb{R} !

Ainsi, les exemples a) et b) montrent que ces deux notions de convergence ne coïncident pas.

- 4) a) Soit $x \in [0,1[$. La série de terme général $a_n x^x$ est à termes positifs, sa suite des sommes partielles converge en croissant vers sa somme, ainsi, pour tout N dans \mathbb{N} : $\sum_{k=0}^{N} a_k x^k \leqslant f_A(x)$.
 - b) On a donc, pour tout N dans N, $\sum_{k=0}^{N} a_k x^k \leq f_A(x)$.

Par passage à la limite dans cette somme finie quand $x \to 1^-$, on a $\sum_{k=0}^{N} a_k \leqslant S_{Abel}(A)$

La série $\sum (a_n)$ étant à termes positifs et la suite de ses sommes partielles étant majorée par $S_{Abel}(A)$, cette série converge et sa somme S(A) étant le plus petit majorant de la suite des sommes partielles (car cette suite croît) : $S(A) \leq S_{Abel}(A)$

- c) Pour tout $x \in [0, 1[, f_A(x) \leqslant S(A) \text{ car } \forall n \in \mathbb{N} \quad a_n x^n \leqslant a_n$. Par passage aux limites quand $x \to 1^-, S_{Abel}(A) = \lim_{1^-} f_A \leqslant S(A)$. Donc $S(A) = S_{Abel}(A)$.
- 5) a) La série entière associée à A a pour rayon de convergence au moins 1, la fonction f_A est continue sur [0,1[. Comme elle admet de plus une limite finie en 1^- , à savoir $S_{Abel}(A)$, elle est prolongeable par continuité en 1^- .

Ainsi $|f_A|$ est bien intégrable sur [0,1[.

- b) Vérifions les axiomes des normes :
 - La fonction ||.|| est à valeurs positives.
 - Soit $A \in \mathcal{A}$ telle que ||A|| = 0. Alors comme $|f_A|$ est positive, continue et d'intégrale nulle sur [0, 1[, elle est nulle sur cet intervalle.

Par unicité du développement en série entière de la fonction nulle, A est la suite nulle.

- Soit $A, B \in \mathscr{A}^2$. Alors $f_{A+B} = f_A + f_B$ d'où : $||A+B|| = \int_0^1 |f_A + f_B| \le \int_0^1 |f_A| + |f_B| = \int_0^1 |f_A| + \int_0^1 |f_B| = ||A|| + ||B||.$
- pour $A \in \mathscr{A}$ et $\lambda \in \mathbb{R}$, $f_{\lambda A} = \lambda f_A$ d'où

$$||\lambda A|| = \int_0^1 |\lambda| \, |f_A| = |\lambda| \int_0^1 |f_A| = |\lambda| \, ||A||$$

Donc ||.|| est une norme sur A.

c) Pour $A = ((-1)^n)_{n \ge 0}$, on a $f_A : x \mapsto \frac{1}{1+x}$ et $||A|| = \int_0^1 \left| \frac{1}{1+x} \right| dx = \int_0^1 \frac{dx}{1+x} = \ln 2$.

Pour $A = ((-1)^n(n+1))$, on a $f_A : x \mapsto \frac{1}{(1+x)^2}$ et

$$||A|| = \int_0^1 \left| \frac{1}{(1+x)^2} \right| dx = \int_0^1 \frac{dx}{(1+x)^2} = \left[\frac{-1}{1+x} \right]_0^1 = \frac{1}{2}.$$

Pour $A = \left(\frac{(-1)^n}{(2n)!}\right)$, on a $\forall x \in [0, 1[\ f_A(x) = \cos(\sqrt{x}) \ge 0 \ \text{car} \ 0 \le \sqrt{x} < 1 \le \frac{\pi}{2}$.

On a alors $||A|| = \int_0^1 \cos(\sqrt{x}) dx$.

On réalise le changement de variable $x = u^2$, dx = 2u du:

$$||A|| = \int_0^1 \cos(\sqrt{x}) dx = \int_0^1 2u \cos(u) du$$

On fait alors une intégration par parties

$$||A|| = [2u(\sin(u))]_0^1 - \int_0^1 2\sin(u)du = [2u\sin(u) + 2\cos(u)]_0^1 = 2\sin(1) + 2\cos(1) - 2\sin(1)$$

d) Pour tous $A, B \in \mathcal{A}^2$ et $\lambda \in \mathbb{R}$,

$$\varphi(\lambda A + B) = \lim_{1 \to \infty} f_{\lambda A + B} = \lim_{1 \to \infty} (\lambda f_A + f_B) = \lambda \lim_{1 \to \infty} f_A + \lim_{1 \to \infty} f_B = \lambda \varphi(A) + \varphi(B)$$

Donc φ est linéaire.

Notant $A_p = (\delta_{n,p})_{n \ge 0}$, on a $f_{A_p} : x \mapsto x^p$ donc $\varphi(A_p) = 1$. On a alors

$$\frac{|\varphi(A_p)|}{||A_p||} = \frac{1}{\left\lceil \frac{x^{p+1}}{p+1} \right\rceil_0^1} = p+1 \underset{p \to +\infty}{\longrightarrow} +\infty$$

Donc φ n'est pas lipschitzienne.

e) On suppose que $(a_n) \in \mathscr{A}$ et que pour tout entier naturel $n, a_n \ge 0$. Cela implique en particulier que pour $x \in [0, 1[, f_A(x) \ge 0$ et donc

$$||A|| = \int_0^1 f_A(x)dx = \int_0^1 \sum_{n=0}^{+\infty} a_n x^n dx$$

Intervertissons la somme et l'intégrale dans le terme de droite.

- Pour tout entier naturel n, l'application $u_n: x \mapsto a_n x^n$ est continue sur [0,1]
- Pour tout entier naturel n, $||u_n||_{\infty,[0,1]} = |a_n| = a_n$. En utilisant la question 4.c) on sait que la série $\sum_{n\geqslant 0} a_n$ converge ce qui montre la convergence normale donc uniforme de la série de fonctions $\sum_{n\geqslant 0} u_n$ sur le segment [0,1].

On peut donc intégrer terme à terme, d'où

$$||A|| = \int_0^1 \sum_{n=0}^{+\infty} a_n x^n dx = \sum_{n=0}^{+\infty} \int_0^1 a_n x^n dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1}$$

En particulier, la série $\sum_{n>0} \frac{a_n}{n+1}$ converge.

- 6) a) Le résultat a été démontré à la question 2).
 - b) Si R > 1, on sait que la fonction somme est continue sur]-R,R[donc en 1, ainsi

$$\lim_{x \to 1} f_A(x) = f_A(1) = \sum_{n=0}^{+\infty} a_n \ 1^n = \sum_{n=0}^{+\infty} a_n = S(A)$$

Ainsi la série $\sum_{n \geq 0} a_n$ converge au sens d'Abel et $S_{Abel}(A) = S(A)$.

- c) i) Comme ρ_n est le reste d'indice n d'une série convergente, il tend vers 0 quand n tend vers $+\infty$, et donc le résultat est acquis par définition de la convergence vers 0.
 - ii) Pour tout entier $k \ge 1$, on a : $a_k = \rho_{k-1} \rho_k$, d'où : (on effectue ce qu'on appelle une transformation d'Abel)

$$S_p(x) - S_n(x) = \sum_{k=n+1}^p a_k \ x^k = \sum_{k=n+1}^p (\rho_{k-1} - \rho_k) \ x^k = \sum_{k=n+1}^p \rho_{k-1} \ x^k - \sum_{k=n+1}^p \rho_k \ x^k = \sum_{k=n+1}^p \rho_k \ x^k = \sum_{k=n+1}^p \rho_k \ x^k = \sum_{k=n+1}^p (x^{k+1} - x^k) \rho_k - x^p \rho_p.$$

iii) On en déduit par i) que, pour tout
$$n \ge N$$
 et pour tout $p > n + 1$:

$$\forall x \in [0,1] \quad , \quad |S_p(x) - S_n(x)| \leq |x^{n+1}| |\rho_n| + \sum_{k=n+1}^{p-1} |x^{k+1} - x^k| |\rho_k| + |x^p| |\rho_p|$$

$$\leq \frac{\varepsilon}{2} \left(|x^{n+1}| + \sum_{k=n+1}^{p-1} |x^{k+1} - x^k| + |x^p| \right)$$

$$= \frac{\varepsilon}{2} \left(x^{n+1} + \sum_{k=n+1}^{p-1} (x^k - x^{k+1}) + x^p \right)$$

 $\operatorname{car} x^{k+1} - x^k \le 0 \text{ si } x \in [0, 1].$

- iv) Or par télescopage, $x^{n+1} + \sum_{k=n+1}^{p-1} (x^k x^{k+1}) + x^p = 2 \ x^{n+1} x^p + x^p = 2 \ x^{n+1} \leqslant 2 \ .$ $1^{n+1} = 2$ Finalement : $\forall n \in \mathbb{N}, \ \forall x \in [0,1]$, $|R_n(x)| \leqslant 2 \ \frac{\varepsilon}{2} = \varepsilon$.
- v) Par définition, on a montré que (R_n) converge uniformément vers l'application nulle sur [0,1], et donc la série de fonctions $\sum_{n\geqslant 0} (a_n x^n)$ converge uniformément sur [0,1].
- vi) Pour tout entier naturel n, la fonction $u_n: x \mapsto a_n x^n$ est continue sur [0,1]. Comme de plus la série de fonctions $\sum_{n\geqslant 0} u_n$ converge uniformément sur [0,1], la limite $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur [0,1]. On en déduit que

$$\lim_{x \to 1^{-}} f_A(x) = \lim_{x \to 1^{-}} f(x) = f(1) = \sum_{n=0}^{+\infty} a_n$$

Cela montre que $A \in \mathscr{A}$ et que $S_{Abel}(A) = S(A)$.

- 7) On remarque que la série $\sum_{n\geq 0} \frac{(-1)^n}{2n+1}$ relève du théorème des séries alternées car
 - Pour tout entier naturel $n, \frac{1}{2n+1} \ge 0$.
 - La suite $(\frac{1}{2n+1})_{n\geqslant 0}$ décroit.
 - La suite $(\frac{1}{2n+1})_{n\geqslant 0}$ tend vers 0.

Cela montre que la série converge.

Par la question 6) on peut conclure que la série converge au sens d'Abel et que :

$$S_{Abel}(A) = \lim_{x \to 1^{-}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = S(A) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$$

Or
$$\forall x \in]-1, 1[$$
, $Arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$.

Ainsi, comme
$$\lim_{x\to 1^-} \operatorname{Arctan}(x) = \frac{\pi}{4}$$
, on obtient par ci-dessus :
$$\left[\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}\right]$$

Partie II - Un théorème de Littlewood

8) On reconnaît le théorème de Césaro. On peut le déduire du théorème de sommation des relations de comparaison: comme $u_n = o(1)$ et que la série $\sum_{n \geqslant 0} 1$ est à termes positifs et divergente, on a

$$\sum_{k=0}^{n} u_n = o\left(\sum_{k=0}^{n} 1\right) = o(n+1) = o(n)$$

donc
$$\frac{1}{n} \sum_{k=0}^{n} u_k \xrightarrow[n \to \infty]{} 0.$$

9) a) Soit $k \in \mathbb{N}^*$. Soit $x \in]0,1[$. On applique l'inégalité des accroissements finis entre 1-x et 1 à la fonction $\varphi: t \mapsto t^k$, qui est bien continue sur [1-x,1], dérivable sur]1-x,1[avec

$$\forall t \in]1 - x, 1[\quad |\varphi'(t)| = k \, t^{k-1} \leqslant k$$

Il vient

$$|(1-x)^k - 1| = |\varphi(1) - \varphi(1-x)| \le |1 - (1-x)| \sup_{t \in]1-x,1[} |\varphi'(t)| \le kx$$

b) Pour $n \in \mathbb{N}^*$ et k compris entre 0 et n, la question ci-dessus donne

$$\left| \left(\left(1 - \frac{1}{n} \right)^k - 1 \right) a_k \right| = \left| \left(1 - \frac{1}{n} \right)^k - 1 \right| |a_k| \leqslant \frac{k}{n} |a_k|$$

En sommant et en utilisant l'inégalité triangulaire

$$\left| \sum_{k=0}^{n} \left(\left(1 - \frac{1}{n} \right)^k - 1 \right) a_k \right| \leqslant \sum_{k=0}^{n} \left| \left(\left(1 - \frac{1}{n} \right)^k - 1 \right) a_k \right| \leqslant \frac{1}{n} \sum_{k=0}^{n} k |a_k|$$

c) Soit $n \ge N$.

$$\forall k \geqslant n+1, \quad \left| \left(1-\frac{1}{n}\right)^k a_k \right| \leqslant \varepsilon \frac{(1-\frac{1}{n})^k}{k} \leqslant \frac{\varepsilon}{n} \left(1-\frac{1}{n}\right)^k$$

La série géométrique de raison $1-\frac{1}{n}$ étant convergente à termes positifs, la série $\sum \left(\left(1-\frac{1}{n}\right)^k a_k\right)_{k\geqslant n+1}$ est absolument convergente et

$$|B_n| \leqslant \sum_{k=n+1}^{\infty} \left| \left(1 - \frac{1}{n} \right)^k a_k \right| \leqslant \frac{\varepsilon}{n} \sum_{k=n+1}^{\infty} \left(1 - \frac{1}{n} \right)^k = \frac{\varepsilon}{n} \frac{\left(1 - \frac{1}{n} \right)^{n+1}}{1 - \left(1 - \frac{1}{n} \right)} \leqslant \varepsilon$$

Par définition de la limite, puisque $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N}^* \quad \forall n \geqslant N \quad |B_n| \leqslant \varepsilon, \text{ on a } \boxed{B_n \underset{n \to \infty}{\to} 0}$

d)
$$b_n = f_A \left(1 - \frac{1}{n} \right) - \sum_{k=0}^n a_k = \sum_{k=0}^n a_k \left(\left(1 - \frac{1}{n} \right)^k - 1 \right) + \sum_{k=n+1}^\infty \left(1 - \frac{1}{n} \right)^k$$

Par l'inégalité triangulaire

$$|b_n| \leqslant \left| \sum_{k=0}^n a_k \left(\left(1 - \frac{1}{n} \right)^k - 1 \right) \right| + |B_n|$$

puis par la question b):

$$|b_n| \leqslant \frac{1}{n} \sum_{k=0}^n k|a_k| + |B_n|$$

Quand n tend vers l'infini, le premier terme de cette somme tend vers 0 par la question 8), et le second terme par la question c).

Donc, par le théorème des gendarmes, $b_n \underset{n \to \infty}{\to} 0$.

On a donc $\sum_{k=0}^{n} a_k = f_A\left(1 - \frac{1}{n}\right) - b_n \xrightarrow[n \to \infty]{} S_{Abel}(A) - 0$ donc la série $\sum_{n \geqslant 0} a_n$ converge, ce qu'il fallait démontrer.

Problème II

1) a) Soit $n \in \mathbb{N}$.

$$\begin{split} P(S+T=n) &= P(\bigsqcup_{(i,j)\in\mathbb{N}^2, i+j=n} (S=i)\cap (T=j)) = \sum_{(i,j)\in\mathbb{N}^2, i+j=n} P((S=i)\cap (T=j)) \\ &= \sum_{(i,j)\in\mathbb{N}^2, i+j=n} P(S=i)P(T=j) \quad \text{par indépendance de } S \text{ et } T \\ &= \sum_{(i,j)\in\mathbb{N}^2, i+j=n} e^{-\lambda} \frac{\lambda^i}{i!} e^{-\mu} \frac{\mu^j}{j!} \\ &= \frac{e^{-(\lambda+\mu)}}{n!} \sum_{i=0}^n \binom{n}{i} \lambda^i \mu^{n-j} \quad \text{par changement d'indice } i \mapsto (i,n-i) \\ &= \frac{e^{-(\lambda+\mu)}(\lambda+\mu)^n}{n!} \end{split}$$

Donc S + T suit la loi de Poisson de paramètre $\lambda + \mu$.

b) Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, Z_n suit la loi de Poisson de paramètre n. La propriété est vraie au rang 1.

Soit $n \in \mathbb{N}^*$ tel que la propriété soit vraie au rang n.

Par le lemme des coalitions, $Z_n = X_1 + \ldots + X_n$ et X_{n+1} sont indépendantes. On en déduit par la question précédente que $Z_{n+1} = Z_n + X_{n+1}$ suit la loi de Poisson de paramètre n+1.

c) Comme $(Z_n \geqslant 2n) \supset (Z_n = 2n), P(Z_n \geqslant 2n) \geqslant P(Z_n = 2n) = n^{2n}e^{-n}(2n)!$.

d)

$$\sum_{k=0}^{+\infty} P(Z_n = k) 2^k = \sum_{k=0}^{+\infty} e^{-n} \frac{n^k}{k!} 2^k = \sum_{k=0}^{+\infty} e^{-n} \frac{(2n)^k}{k!} = e^{-n} e^{2n} = \boxed{e^n}$$

e) Première méthode:

$$e^{n} = \sum_{k=0}^{+\infty} P(Z_{n} = k) 2^{k} = \sum_{k=2n}^{+\infty} P(Z_{n} = k) 2^{k} = \sum_{k=2n}^{+\infty} P(Z_{n} = k) 2^{2n} = P(Z_{n} \geqslant 2n) 4^{n}$$

donc
$$P(Z_n \geqslant 2n) \leqslant \left(\frac{e}{4}\right)^n$$

Seconde méthode:

Par transfert et par la question précédente, $E(2^{\mathbb{Z}_n}) = e^n$.

$$P(Z_n \geqslant 2n) = P(2^{Z_n} \geqslant 2^{2n})$$
 par stricte croissance de l'exponentielle
$$\leqslant \frac{E(2^{Z_n}}{2^{2n}} \text{ par la propriété de Markov et car } 2^{Z_n} \text{ est positive}$$

$$= \left(\frac{e}{4}\right)^n$$

f) Par les questions précédentes et par croissance de $t \mapsto t^{1/n}$ sur \mathbb{R}^+ , on a pour tout $n \in \mathbb{N}^*$,

$$\frac{n^2 e^{-1}}{((2n)!)^{1/n}} \leqslant (P(Y_n \geqslant 2))^{\frac{1}{n}} \leqslant \frac{e}{4}$$

Or par la formule de Stirling,

$$(2n)! = \sqrt{2\pi 2n} \left(\frac{2n}{e}\right)^{2n} (1 + o(1))$$

donc

$$\left((2n)!\right)^{1/n} = (4\pi n)^{1/2n} \left(\frac{2n}{e}\right)^2 (1+o(1))^{1/n} = e^{\frac{1}{2n}(\ln n + \ln(4\pi))} \frac{4n^2}{e^2} (1+o(1))^{\frac{1}{n}} \sim \frac{4n^2}{e^2}$$

 $\text{car quand } n \to +\infty, \ e^{\frac{1}{2n}(\ln n + \ln(4\pi))} \to e^0 = 1 \text{ et } (1 + o(1))^{1/n} = e^{\frac{\ln(1 + o(1))}{n}} \to e^0 = 1.$

Donc quand $n \to +\infty$,

$$\frac{n^2e^{-1}}{((2n)!)^{1/n}}\sim \frac{n^2}{e^{\frac{4n^2}{e^2}}}\to \frac{e}{4}$$

Par le théorème de limite par encadrement,

$$\lim_{n \to +\infty} (P(Y_n \geqslant 2))^{\frac{1}{n}} = \frac{e}{4}$$

- 2) L'ensemble $E = \left\{ \frac{u_n}{n}, n \in \mathbb{N}^* \right\}$ est une partie non vide de \mathbb{R} minorée par zéro, donc il admet une borne inférieure réelle.
- 3) a) Comme $\alpha + \varepsilon > \alpha$ et α est le plus grand minorant de l'ensemble précédent, $\alpha + \varepsilon$ n'est pas un minorant de cet ensemble, donc il existe $n_0 \in \mathbb{N}^*$ tel que $\left\lceil \frac{u_{n_0}}{n_0} < \alpha + \varepsilon \right\rceil$.

De plus α est un minorant de E donc $\alpha \leq \frac{u_{n_0}}{n_0}$

b) Comme $u_n = u_{qn_0+r} \leqslant u_{qn_0} + u_r$ et $u_{qn_0} = un_0 + \ldots + n_0 \leqslant u_{n_0} + \ldots + u_{n_0} = qu_{n_0}$, on obtient

$$\boxed{\frac{u_n}{n} \leqslant \frac{q}{qn_0 + r} u_{n_0} + \frac{u_r}{n}}$$

c) Dans les notations de la question précédente, si $q \ge 1$, $\frac{q}{qn_0+r} \le \frac{q}{qn_0} = \frac{1}{n_0}$, et si q = 0, $\frac{q}{qn_0+r} = 0$ $0 \le \frac{1}{n_0}$

Donc pour tout $n \ge 1$, comme $u_{n_0} \ge 0$,

$$\frac{u_n}{n} \leqslant \frac{u_{n_0}}{n_0} + \frac{u_r}{n} \leqslant \alpha + \varepsilon + \frac{K}{n}$$

où $K = \max(u_0, u_1, \dots, u_{n_0-1})$ est indépendant de n.

Or $\frac{K}{n} \to 0$ quand $n \to +\infty$ donc il existe $M \in \mathbb{N}^*$ tel que $\forall n \geqslant M, \ \frac{K}{n} \leqslant \varepsilon$.

Comme de plus α minore E, on a

$$\forall n \geqslant M, \ \alpha \leqslant \frac{u_n}{n} \leqslant \alpha + 2\varepsilon$$

d) Ainsi pour tout $\varepsilon'>0$, posant $\varepsilon=\frac{\varepsilon'}{2}$, il existe $M\in\mathbb{N}^*$ tel que

$$\forall n \geqslant M, \ \left| \frac{u_n}{n} - \alpha \right| \leqslant \varepsilon'$$

Donc par définition de la limite, $\left(\frac{u_n}{n}\right)$ converge vers α

4) Si $P(X_1 < x) = 1$, alors pour tout $n \in \mathbb{N}^*$, $P(Y_n < x) = 1$ car $(X_1 < x) \cap (X_2 < x) \cap \dots (X_n < x) \subset (Y_n < x)$ donc

$$P(Y_n < x) \ge P((X_1 < x) \cap (X_2 < x) \cap \dots (X_n < x))$$

$$= P(X_1 < x)P(X_2 < x) \dots P(X_n < x)$$

$$= (P(X_1 < x)^n = 1)$$

et car $P(Y_n < x) \le 1$.

Si $P(X_1 \ge x) > 0$, alors comme $(X_1 \ge x) \cap (X_2 \ge x) \cap \dots (X_n \ge x) \subset (Y_n \ge x)$,

$$P(Y_n \geqslant x) \geqslant P(X_1 \geqslant x)^n > 0$$

5) Soit $\omega \in ((Y_m \geqslant x) \cap (\frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant x)).$

Alors

$$Y_{m+n}(\omega) = \frac{Z_m(\omega) + X_{m+1}(\omega) + \ldots + X_{m+n}(\omega)}{m+n} = \frac{Z_m(\omega)}{m+n} + \frac{1}{m+n}(X_{m+1}(\omega) + \ldots + X_{m+n}(\omega))$$

$$\geqslant \frac{mx}{m+n} + \frac{1}{m+n}nx = x$$

donc $\omega \in (Y_{m+n} \ge x)$ d'où l'inclusion demandée.

Ainsi

$$P(Y_{n+m} \geqslant x) \geqslant P\left((Y_m \geqslant x) \cap \left(\frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant x\right)\right)$$

Or par le lemme des coalitions, Y_m et $\frac{1}{n} \sum_{k=m+1}^{m+n} X_k$ sont indépendantes donc

$$P\left((Y_m \geqslant x) \cap \left(\frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant x\right)\right) = P(Y_m \geqslant x) P\left(\frac{1}{n} \sum_{k=m+1}^{m+n} X_k \geqslant x\right)$$

De plus $(X_{m+1}, \ldots, X_{m+n})$ suit la même loi que (X_1, \ldots, X_n) donc $\frac{1}{n} \sum_{k=m+1}^{m+n} X_k$ suit la même loi que Y_n et ainsi

$$P\left(\frac{1}{n}\sum_{k=m+1}^{m+n}X_k\geqslant x\right)=P(Y_n\geqslant x)$$

Dans le détail, notant E l'ensemble des valeurs prises par X_1 , E est au plus dénombrable donc E^n également et

$$P\left(\frac{1}{n}\sum_{k=m+1}^{m+n}X_{k}\geqslant x\right) = \sum_{x_{1},\dots,x_{n}\in E,\frac{1}{n}(x_{1}+\dots+x_{n})\geqslant x} P((X_{m+1},\dots,X_{m+n}) = (x_{1},\dots,x_{n}))$$

$$= \sum_{x_{1},\dots,x_{n}\in E,\frac{1}{n}(x_{1}+\dots+x_{n}\geqslant x)} P(X_{m+1} = x_{1})\dots P(X_{m+n}) = x_{n}))$$

$$= \sum_{x_{1},\dots,x_{n}\in E,\frac{1}{n}(x_{1}+\dots+x_{n}\geqslant x)} P(X_{1} = x_{1})\dots P(X_{n}) = x_{n}))$$

$$= \sum_{x_{1},\dots,x_{n}\in E,\frac{1}{n}(x_{1}+\dots+x_{n}\geqslant x)} P((X_{1},\dots,X_{n}) = (x_{1},\dots,x_{n}))$$

$$= P(Y_{n}\geqslant x)$$

Ainsi

$$P(Y_{n+m} \geqslant x) \geqslant P(Y_m \geqslant x)P(Y_n \geqslant x)$$

6) Dans le cas où $P(X_1 < x) = 1$, alors d'après la question 4), la suite $(P(Y_n \ge x)^{1/n}$ est la suite nulle donc converge vers 0.

Dans le cas contraire, cette suite est à valeurs strictement positives d'après la même queston 4), donc on peut poser pour tout $n \in \mathbb{N}^*$, $u_n = -\ln P(Y_n \geqslant x)$.

D'après la question précédent et la croissance de ln, on a pour tous $m, n \in \mathbb{N}^*$,

$$u_{m+n} \leqslant u_m + u_n$$

De plus cette suite est à valeurs positives car P est à valeurs dans [0,1].

D'après la question 3), la suite $(\frac{u_n}{n})$ converge vers un réel α , donc par continuité de l'exponentielle,

$$P(Y_n \geqslant x)^{1/n} = e^{\frac{-u_n}{n}} \to e^{-\alpha} \text{ quand } n \to +\infty$$