1. On a bien sûr $\operatorname{Toep}_n(\mathbf{C}) \subseteq \mathcal{M}_n(\mathbf{C})$, et $\operatorname{Toep}_n(\mathbf{C}) \neq \emptyset$ puisque $0_{\mathcal{M}_n(\mathbf{C})} = T(0,\ldots,0) \in \operatorname{Toep}_n(\mathbf{C})$. Montrons que $\operatorname{Toep}_n(\mathbf{C})$ est stable par combinaison linéaire : soient $(t_{-n+1},\ldots,t_0,\ldots,t_{n-2}) \in \mathbf{C}^{2n-1}$, $(t'_{-n+1},\ldots,t'_0,\ldots,t'_{n-2}) \in \mathbf{C}^{2n-1}$, et $\lambda \in \mathbf{C}$. Alors :

$$T(t_{-n+1},\ldots,t_0,\ldots,t_{n-1}) + \lambda T(t'_{-n+1},\ldots,t'_0,\ldots,t'_{n-1}) = T(t_{-n+1}+\lambda t'_{-n+1},\ldots,t_0+\lambda t'_0,t_{n-1}+\lambda t'_{n-1})$$

d'où le résultat.

Le calcul qui précède montre en passant que l'application ϕ :

$$\mathbf{C}^{2n-1} \rightarrow \mathrm{Toep}_n(\mathbf{C})$$

$$(t_{-n+1}, \dots, t_0, \dots, t_{n-1}) \mapsto T(t_{-n+1}, \dots, t_0, \dots, t_{n-1})$$

est linéaire. Elle est injective par unicité des coefficients d'une matrice et surjective par définition de $\operatorname{Toep}_n(\mathbb{C})$, donc c'est un isomorphisme de C-espaces vectoriels. En particulier il conserve les dimensions, donc :

$$\dim(\operatorname{Toep}_n(\mathbf{C})) = \dim(\mathbf{C}^{2n-1}) = 2n - 1,$$

Pour tout $r \in [-(n-1); n-1]$, notons e_r l'élément $(t_{-n+1}, \ldots, t_0, \ldots, t_{n-1}) \in \mathbb{C}^{2n-1}$ défini par $t_k = 0$ si $k \neq r$ et $t_r = 1$; la famille $(e_r)_{-n+1 \leq r \leq n-1}$ est donc la base canonique de \mathbb{C}^{2n-1} . On pose alors M_r l'image de e_r par l'application ci-dessus. C'est la matrice définie par

$$\forall (i, j) \in [[1, n]]^2, M_r[i, j] = \begin{cases} 1 & \text{si } j - i = r \\ 0 & \text{sinon} \end{cases}$$

Comme ϕ est un isomorphisme d'espace vectoriel, il envoie une base sur une base donc $(M_r)_{-n+1 \le r \le n-1}$ est une base de Toep_n(C).

2. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$ qui commutent. Alors, par une récurrence facile sur $\ell \in \mathbb{N}$, on vérifie que pour tout $\ell \in \mathbb{N}$, on a : $AB^{\ell} = B^{\ell}A$. Toujours par récurrence, cette fois sur $k \in \mathbb{N}$, on montre que pour tout $k \in \mathbb{N}$ et tout $\ell \in \mathbb{N}$, on a : $A^kB^{\ell} = B^{\ell}A^k$. Par conséquent les applications linéaires suivantes :

$$C[X] \times C[X] \rightarrow \mathcal{M}_n(C)$$
, et $C[X] \times C[X] \rightarrow \mathcal{M}_n(C)$
 $(P,Q) \mapsto P(A)Q(B)$, et $(P,Q) \mapsto Q(B)P(A)$

coïncident sur la famille génératrice $((X^k, X^\ell))_{(k,\ell) \in \mathbb{N} \times \mathbb{N}}$ de $\mathbb{C}[X] \times \mathbb{C}[X]$, donc sont égales. Autrement dit : $\forall P \in \mathbb{C}[X]$, $\forall Q \in \mathbb{C}[X]$, P(A)Q(B) = Q(B)P(A).

Remarque : Ce résultat est au programme en MP (mais pas en PSI).

- 3. Un calcul direct donne : $\chi_A = X^2 2aX + (a^2 bc)$.
- 4. Les valeurs propres de A sont les racines de χ_A , c'est-à-dire a+z et a-z où $z\in \mathbb{C}$ est une racine carrée de bc. Nous allons distinguer deux cas.

 $Si \ z \neq 0$. Cela correspond à $bc \neq 0$. Il y a dans ce cas deux valeurs propres distinctes, donc A est diagonalisable. $Si \ z = 0$. Cela correspond à bc = 0, c'est-à-dire à b = 0 ou c = 0. Il y a dans ce cas une unique valeur propre double a, et si un seul des deux coefficients b ou c est nul alors A n'est pas diagonalisable : si c'était le cas, il existerait $P \in GL_2(\mathbb{C})$ telle que :

$$A = P \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} P^{-1} = aPI_2P^{-1} = aI_2,$$

mais c'est absurde. Par contre, si b=c=0, alors $A=\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ est diagonale, donc diagonalisable.

En résumé, $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$ est diagonalisable dans C si, et seulement si $bc \neq 0$ ou b = c = 0.

5. Soit $M \in \mathcal{M}_2(\mathbb{C})$. Soit M est diagonalisable dans \mathbb{C} , soit M ne l'est pas. Dans le premier cas, M est semblable à $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ ou $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ avec $\alpha, \beta \in \mathbb{C}$ et $\alpha \neq \beta$ (selon que M ait une ou deux valeurs propres).

Dans le second cas, on utilise le fait que M soit néanmoins trigonalisable dans C (comme toute matrice complexe): il existe donc $\alpha, \alpha', \gamma \in C$ tels que M soit semblable à $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha' \end{pmatrix}$. Les coefficients diagonaux sont les valeurs propres de M avec multiplicité; comme M n'est pas diagonalisable dans ce cas-ci, elle ne peut pas avoir deux racines distinctes, ce qui impose $\alpha = \alpha'$; ainsi M est semblable à $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$.

Dans tous les cas, M est semblable à une matrice de la forme $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ ou $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$, où $\alpha \neq \beta$ (prendre $\gamma = 0$ donne le deuxième type de matrice dans le cas où M est diagonalisable).

6. Comme la relation de similitude est transitive, il suffit de démontrer que $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ et $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$ sont semblables à des matrices de Toeplitz, où $\alpha, \beta, \gamma \in \mathbb{C}$ vérifient $\alpha \neq \beta$. Or $\begin{pmatrix} \alpha & \gamma \\ 0 & \alpha \end{pmatrix}$ est une matrice de Toeplitz : il n'y a donc rien à démontrer dans ce cas ; il reste à vérifier qu'une matrice de la forme $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ est semblable à une matrice de Toeplitz. La question \mathbb{Q} 4 va nous aiguiller.

Détermination d'une matrice de Toeplitz semblable à $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ où $\alpha \neq \beta$.

Analyse. Soit $A = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$ une matrice de Toeplitz diagonalisable, et soit $z \in \mathbb{C}$ une racine carrée de bc.

Alors A est semblable à $\begin{pmatrix} a+z & 0 \\ 0 & a-z \end{pmatrix}$ d'après la quatrième question. Si on trouve $a,b,c \in \mathbb{C}$ tels que $a+z=\alpha$

et $a-z=\beta$, alors on aura démontré que $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ est semblable à la matrice de Toeplitz A. Résoudre ce système

d'inconnues a et z donne $a=\frac{\alpha+\beta}{2}$ et $z=\frac{\alpha-\beta}{2}$ (c'est-à-dire $bc=\frac{(\alpha-\beta)^2}{4}$). Nous allons nous simplifier la tâche en prenant b=c, de sorte que $z=b=\frac{\alpha-\beta}{2}$ convienne.

 $\textit{Synth\`ese.} \text{ Pour tous } \alpha, \beta \in \mathbf{C} \text{ distincts, posons } A = \begin{pmatrix} \frac{\alpha+\beta}{2} & \frac{\alpha-\beta}{2} \\ \frac{\alpha-\beta}{2} & \frac{\alpha+\beta}{2} \end{pmatrix}. \text{ Alors } A \text{ est une matrice de Toeplitz et, suivant la}$

résolution de la question \mathbf{Q} 4 et l'analyse ci-dessus, elle est semblable à $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$. On a donc trouvé une matrice de

Toeplitz semblable à
$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
, où $\alpha \neq \beta$.

Ceci achève de démontrer que les matrices diagonales (à coefficients diagonaux distincts) et triangulaires supérieures de $\mathcal{M}_2(\mathbb{C})$ sont semblables à des matrices de Toeplitz, donc par transitivité toute matrice d'ordre 2 l'est.

7. L'égalité matricielle $A_n(a, b, c)X = \lambda X$ se traduit sous forme de système ainsi :

c'est-à-dire:

$$\begin{cases} ax_1 + bx_2 &= \lambda x_1, \\ \forall k \in [[1, n-2]], cx_k + ax_{k+1} + bx_{k+2} &= \lambda x_{k+1}, \\ cx_{n-1} + ax_n &= \lambda x_n. \end{cases}$$

Les deux égalités aux extrémités correspondent aux cas particuliers k = 0 et k = n - 1 de la deuxième relation, avec la convention $x_0 = x_{n+1} = 0$. Alors :

$$\forall k \in [0, n-1], cx_k + (a-\lambda)x_{k+1} + bx_{k+2} = 0.$$

8. Une suite $(x_k)_{k \in \mathbb{N}}$ vérifiant la relation de récurrence linéaire du second ordre :

$$\forall k \in \mathbb{N}, \ bx_{k+2} + (a - \lambda)x_{k+1} + cx_k = 0$$

(elle est bien du second ordre, puisqu'il est supposé que $b \neq 0$), s'écrit en fonction des racines de l'équation caractéristique $bx^2 + (a - \lambda)x + c = 0$ ainsi :

- − s'il n'existe qu'une racine double r, alors une telle suite $(x_k)_{k \in \mathbb{N}}$ est combinaison linéaire des suites $(r^k)_{k \in \mathbb{N}}$ et $(kr^k)_{k \in \mathbb{N}}$;
- s'il existe deux racines r_1 et r_2 , alors une telle suite $(x_k)_{k\in\mathbb{N}}$ est combinaison linéaire des suites $(r_1^k)_{k\in\mathbb{N}}$ et $(r_2^k)_{k\in\mathbb{N}}$.
- 9. Raisonnons par l'absurde, et supposons l'existence d'une unique solution r à l'équation caractéristique $bx^2 + (a \lambda)x + c = 0$. Alors il existe $\alpha, \beta \in \mathbb{C}$ tels que : $\forall k \in \mathbb{N}$, $x_k = (\alpha + \beta k)r^k$. Les conditions $x_0 = x_{n+1} = 0$ impliquent $\alpha = 0$, puis $\beta(n+1)r^{n+1} = 0$. Il est manifeste que $r \neq 0$ (en effet 0 n'est racine de $bx^2 + (a \lambda)x + c = 0$ qu'à la condition que c = 0, ce qui est exclu), donc ceci impose $\beta = 0$. Mais alors $(x_k)_{k \in \mathbb{N}}$ est la suite identiquement nulle, et en particulier

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

est nul également : c'est impossible puisqu'il s'agit d'un vecteur propre.

Par conséquent, l'équation caractéristique admet deux racines distinctes r_1 et r_2 .

10. Le nombre 0 est racine de l'équation $bx^2 + (a - \lambda)x + c = 0$ si et seulement si c = 0 : c'est exclu puisque par hypothèse $bc \neq 0$. Donc r_1 et r_2 sont non nuls.

Soient $\alpha, \beta \in \mathbb{C}$ tels que : $\forall k \in \mathbb{N}$, $x_k = \alpha r_1^k + \beta r_2^k$. Alors $x_0 = 0$ implique $\alpha = -\beta$, et on peut écrire : $\forall k \in \mathbb{N}$, $x_k = \alpha (r_1^k - r_2^k)$. Comme, de plus, on a $x_{n+1} = 0$, on en déduit $\alpha (r_1^{n+1} - r_2^{n+1}) = 0$. Le nombre complexe α étant non nul (sinon $(x_k)_{k \in \mathbb{N}}$ est identiquement nulle, et X = 0, impossible puisqu'il s'agit d'un vecteur propre), on en déduit

$$r_1^{n+1} = r_2^{n+1}$$
 après division de l'égalité précédente par α . Cela équivaut à $\left(\frac{r_1}{r_2}\right)^{n+1} = 1$, c'est-à-dire : $\frac{r_1}{r_2} \in \mathbb{U}_{n+1}$.

11. Grâce aux relations entre coefficients et racines, nous avons :

$$r_1 r_2 = \frac{c}{b}$$
, et $r_1 + r_2 = \frac{\lambda - a}{b}$.

 $\text{Par cons\'equent } \lambda = a + b \; (r_1 + r_2). \; \text{Comme, de plus, } \\ \frac{r_1}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_1}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_1}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_1}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_2}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_2}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_2}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_2}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \right\}, \; \text{il existe } \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \\ \frac{r_2}{r_2} \in \mathbb{U}_{n+1} = \left\{ e^{\frac{2i\pi\ell}{n+1}} \; | \; \ell \in \llbracket [0,n \rrbracket] \; \text{tel que : } \right\}.$

$$r_1 = r_2 e^{\frac{2i\pi\ell}{n+1}},\tag{*}$$

et on a même $\ell \neq 0$, sinon $r_1 = r_2$ et les racines ne sont pas distinctes. Cela nous donne ensuite, *via* la technique de l'angle moitié :

$$\lambda = a + br_2 \left(1 + e^{\frac{2i\pi\ell}{n+1}} \right) = a + br_2 e^{\frac{i\pi\ell}{n+1}} \left(e^{-\frac{i\pi\ell}{n+1}} + e^{\frac{i\pi\ell}{n+1}} \right) = a + 2br_2 e^{\frac{i\pi\ell}{n+1}} \cos\left(\frac{\pi\ell}{n+1}\right),$$

d'où le résultat désiré en posant $\rho = br_2 e^{\frac{i\pi t}{n+1}}$. On a bien, en effet,

$$\rho^2 = b^2 r_2^2 e^{\frac{2i\pi\ell}{n+1}} = b^2 r_2 r_2 e^{\frac{2i\pi\ell}{n+1}} \stackrel{(*)}{=} b^2 r_1 r_2 = b^2 \frac{c}{b} = bc.$$

12. Soit $k \in [0, n]$. La résolution des questions précédentes nous montre que $x_k = \alpha (r_1^k - r_2^k)$ et, toujours avec les notations de la question précédente :

$$r_1^k - r_2^k = r_2^k \left(e^{\frac{2i\pi\ell k}{n+1}} - 1 \right) = r_2^k e^{\frac{i\pi\ell}{n+1}} \left(e^{\frac{i\pi\ell k}{n+1}} - e^{-\frac{i\pi\ell k}{n+1}} \right) = 2ir_2^k e^{\frac{i\pi\ell k}{n+1}} \sin\left(\frac{\pi\ell k}{n+1}\right).$$

et d'après la résolution de la question précédente on a $r_2e^{\frac{i\pi\ell}{n+1}}=\frac{\rho}{b}$, donc $r_2^ke^{\frac{i\pi\ell k}{n+1}}=\left(\frac{\rho}{b}\right)^k$, ce qui achève de démontrer que $x_k=2i\alpha\frac{\rho^k}{\beta^k}\sin\left(\frac{\pi\ell k}{n+1}\right)$.

13. Soit $\rho \in \mathbb{C}$ une racine carrée de bc. L'étude des questions Q 7 à Q 12 permet de montrer que pour tout $\ell \in \llbracket 1, n \rrbracket$,

le nombre complexe $\lambda_{\ell} = a + 2\rho \cos\left(\frac{\ell\pi}{n+1}\right)$ est une valeur propre de $A_n(a,b,c)$, de vecteur propre associé $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$,

où l'on a défini:

$$\forall k \in [[1, n]], \ x_k = \frac{\rho^k}{\beta^k} \sin\left(\frac{\pi \ell k}{n+1}\right).$$

Les $\cos\left(\frac{\ell\pi}{n+1}\right)$, et donc les λ_ℓ , sont tous distincts pour $\ell \in [1, n]$, l'application cosinus étant injective sur $[0, \pi]$ (car strictement décroissante). On en déduit que la matrice $A_n(a, b, c)$ admet n valeurs propres distinctes : elle est diagonalisable.

14. On a:

$$M_{n}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & & & \ddots & \ddots & 1 \\ 1 & \ddots & & & \ddots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \end{pmatrix}, \dots, M_{n}^{n-1} = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 & 1 \\ 1 & \ddots & & & & 0 \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix}, M_{n}^{n} = \mathbf{I}_{n},$$

ou plus synthétiquement, si f désigne l'endomorphisme canoniquement associé à M et (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n :

$$\forall k \in [[1, n]], \forall i \in [[1, n]], f^k(e_i) = \begin{cases} e_{i-k} & \text{si } i > k, \\ e_{n+i-k} & \text{si } i \leq k. \end{cases}$$

Comme $M_n^{n-1}M_n=M_n^n=\mathrm{I}_n$, la matrice M_n est inversible, d'inverse M_n^{n-1} . Un polynôme annulateur de M_n est X^n-1 .

15. Le polynôme annulateur $X^n - 1 = \prod_{k=0}^{n-1} (X - \omega_n^k)$ est scindé et à racines simples dans C, donc M_n est diagonalisable dans C.

Ses valeurs propres sont parmi les racines du polynôme annulateur X^n-1 , c'est-à-dire dans l'ensemble $\{\omega_n^k \mid k \in \llbracket 0, n-1 \rrbracket \}$. Résoudre l'équation $M_nX = \omega_n^k X$, d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{C})$, montre que le spectre de M_n est exactement l'ensemble $\{\omega_n^k \mid k \in \llbracket 0, n-1 \rrbracket \}$, et pour tout $k \in \llbracket 0, n-1 \rrbracket$ on a :

$$\operatorname{Ker}\left(M_{n}-\omega_{n}^{k}\operatorname{I}_{n}\right)=\operatorname{Vect}_{C}\left\{\begin{pmatrix}1\\\omega_{n}^{k}\\\omega_{n}^{2k}\\\vdots\\\omega_{n}^{k(n-1)}\end{pmatrix}\right\}.$$

Une base de $\mathcal{M}_{n,1}(\mathbb{C})$ constituée de vecteurs propres de M_n est donc :

$$\begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix}, \begin{pmatrix}
1 \\
\omega_n \\
\omega_n^2 \\
\vdots \\
1
\end{pmatrix}, \dots, \begin{pmatrix}
1 \\
\omega_n^{n-1} \\
\omega_n^{2(n-1)} \\
\vdots \\
\omega_n^{(n-1)^2}
\end{pmatrix}.$$

16. La matrice Φ_n est la matrice de passage de la base canonique de $\mathcal{M}_{n,1}(C)$ dans la base de vecteurs propres consti-

tuée dans la question précédente. Elle est donc inversible, et d'après la formule du changement de base :

$$\Phi_n^{-1} M_n \Phi_n = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \omega_n & \ddots & & \vdots \\ \vdots & \ddots & \omega_n^2 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & \omega_n^{n-1} \end{pmatrix}.$$

- 17. Si A est une matrice circulante, il existe $(t_0, \ldots, t_{n-1}) \in \mathbb{C}^n$ tel que $A = T(t_1, t_2, \ldots, t_0, \ldots, t_{n-1})$. Mais alors, suivant ce que l'on a démontré dans la question \mathbb{Q} 14, on a aussi : $A = \sum_{k=0}^{n-1} t_k M_n^k$. Il suffit alors de poser $P = \sum_{k=0}^{n-1} t_k X^k$ pour avoir le résultat voulu.
- 18. Soit $P \in \mathbb{C}[X]$. On fait la division euclidienne de P par $X^n 1$: il existe $Q, R \in \mathbb{C}[X]$ tels que $\deg(R) < n$ et

$$P = Q(X^n - 1) + R$$

En évaluant cette égalité en M_n , on obtient :

$$P(M_n) = R(M_n)$$

Or, si on écrit R sous la forme $R = \sum_{k=0}^{n-1} t_k X^k$, alors $P(M_n) = \sum_{k=0}^{n-1} t_k M_n^k$ est une matrice circulante.

19. D'après les deux questions précédentes, l'ensemble des matrices circulantes est l'image de l'application linéaire :

$$\varphi: \begin{cases} C[X] & \to & \mathscr{M}_n(C) \\ P & \mapsto & P(M_n) \end{cases},$$

donc est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ (et même de Toep_n(\mathbb{C})).

De cette même description, on déduit la stabilité par produit, puisque $P(M_n)Q(M_n) = (PQ)(M_n) \in \text{Im }(\varphi)$. Pour finir,

$${}^{t}P(M_{n}) = P({}^{t}M_{n}) = P(M_{n}^{n-1}) = (P \circ X^{n-1})(M_{n}) \in \operatorname{Im}(\varphi)$$

On en déduit que l'ensemble des matrices circulantes est stable par transposition.

20. Notons δ_n la matrice diagonale de la question **Q 16**, et soit A une matrice circulante. Il existe $P \in \mathbb{C}[X]$ tel que $A = P(M_n)$. Alors, comme $M_n = \Phi_n \delta_n \Phi_n^{-1}$, on a :

$$A = \Phi_n P(\delta_n) \Phi_n^{-1} = \Phi_n \begin{pmatrix} P(1) & 0 & \cdots & \cdots & 0 \\ 0 & P(\omega_n) & \ddots & & \vdots \\ \vdots & \ddots & P(\omega_n^2) & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & P(\omega_n^{n-1}) \end{pmatrix} \Phi_n^{-1}.$$

Le spectre de A est donc $\{P(\omega_n^k) \mid k \in [0, n-1]\}$, et les vecteurs propres associés sont les mêmes que ceux de M_n , puisque la matrice de passage Φ_n donnant la diagonalisation ci-dessus est la même.

21. $-\left[i\Rightarrow ii\right]$ Supposons qu'il existe $x_0\in\mathbb{C}^n$ tel que $\left(x_0,f_M(x_0),\ldots,f_M^{n-1}(x_0)\right)$ soit une base de \mathbb{C}^n . Alors $f_M^n(x_0)\in\mathbb{C}^n=\mathrm{Vect}_{\mathbb{C}}\left(\left(x_0,f_M(x_0),\ldots,f_M^{n-1}(x_0)\right)\right)$, donc il existe $a_0,\ldots,a_{n-1}\in\mathbb{C}$ tels que $:f_M^n(x_0)=\sum\limits_{k=0}^{n-1}a_kf_M^k(x_0)$. La matrice de f_M relativement à la base $\left(x_0,f_M(x_0),\ldots,f_M^{n-1}(x_0)\right)$ est alors :

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix} = C(a_0, \dots, a_{n-1}),$$

donc (i) implique (ii).

 $-\lfloor ii \Rightarrow i \rfloor$ Réciproquement, si M est semblable à la matrice $C(a_0, \ldots, a_{n-1})$, soit (x_0, \ldots, x_{n-1}) la base dans laquelle f_M a pour matrice $C(a_0, \ldots, a_{n-1})$. Alors, par définition de la matrice associée à un endomorphisme dans une base donnée, on a $f_M(x_0) = x_1$, $f_M(x_1) = x_2$, etc., et plus généralement :

$$\forall k \in [0, n-1], f_M(x_k) = x_{k+1}.$$

On en déduit, par récurrence, que pour tout $k \in [0, n-1]$ on a $x_k = f_M^k(x_0)$. Finalement, $(x_0, x_1, \dots, x_{n-1}) = (x_0, f_M(x_0), \dots, f_M^{n-1}(x_0))$ est une base de la forme annoncée. Ainsi (ii) implique (i).

22. Utilisant le fait que $f_M(e_i) = \lambda_i e_i$ pour tout $i \in [[1, n]]$, on voit que la matrice de la famille $(u, f_M(u), \dots, f_M^{n-1}(u))$ dans la base de vecteurs propres (e_1, \dots, e_n) est :

$$\begin{pmatrix} u_1 & \lambda_1 u_1 & \cdots & \lambda_1^{n-1} u_1 \\ u_2 & \lambda_2 u_2 & \cdots & \lambda_2^{n-1} u_2 \\ \vdots & \vdots & \vdots & \vdots \\ u_n & \lambda_n u_n & \cdots & \lambda_n^{n-1} u_n \end{pmatrix}.$$

La famille $(u, f_M(u), \dots, f_M^{n-1}(u))$ est une base de \mathbb{C}^n à la condition que cette matrice soit inversible. Or son déterminant égal, en utilisant sa n-linéarité par rapport aux lignes :

$$u_1 \cdots u_n \begin{vmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^{n-1} \end{vmatrix}.$$

Nous reconnaissons là le déterminant d'une matrice de Vandermonde : il est non nul à la condition que les λ_i soient tous distincts. La famille $(u, f_M(u), \dots, f_M^{n-1}(u))$ est donc une base de \mathbb{C}^n si, et seulement si les u_i sont tous non nuls et les λ_i tous distincts.

23. En combinant les questions Q 21 et Q 22, on déduit qu'un endomorphisme diagonalisable de \mathbb{C}^n est cyclique si et seulement s'il admet n valeurs propres distinctes, et les vecteurs cycliques sont, dans ce cas, tous les vecteurs n'ayant aucune coordonnée nulle dans une base de vecteurs propres.

24. Soient
$$\lambda \in \mathbb{C}$$
 et $X_0 = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^n$. Alors :

$$C(a_0, \dots, a_{n-1})X_0 = \lambda X_0 \Longleftrightarrow \begin{cases} x_1 & a_0 x_n = \lambda x_1 \\ x_1 & + a_1 x_n = \lambda x_2 \\ \vdots & \vdots \\ x_{n-2} & + a_{n-2} x_n = \lambda x_{n-1} \\ x_{n-1} & + a_{n-1} x_n = \lambda x_n \end{cases}$$

On peut, dans la première équation, remplacer λx_1 par la valeur donnée dans la deuxième équation (après multiplication par λ). C'est-à-dire que l'on fait $L_1 \leftarrow L_1 + \lambda L_2$ puis on simplifie par λx_1 des deux cotés. La nouvelle première ligne du système est alors :

$$(a_0 + a_1 \lambda) x_n = \lambda^2 x_2$$

On peut recommencer en faisant $L_1 \leftarrow L_1 + \lambda^2 L_3$ puis on simplifie par $\lambda^2 x_2$. La nouvelle première ligne est alors :

$$(a_0 + a_1\lambda + a_2\lambda^2)x_n = \lambda^3 x_3$$

En réitérant le procédé, on remplace finalement la première ligne par

$$\left(\sum_{i=0}^{n-1} a_i \lambda^i\right) x_n = \lambda^n x_n$$

qui peut aussi s'écrire,

$$P(\lambda)x_n = 0$$

où
$$P = X^n - a_{n-1}X^{n-1} - \dots - a_1X - a_0$$
.

On peut alors séparer deux cas :

- − Si $P(\lambda) \neq 0$ alors on a nécessairement $x_n = 0$. La dernière équation du sytème implique alors que $x_{n-1} = 0$, puis, en remontant le système que pour tout $i \in [[1; n]]$, $x_i = 0$. Finalement $X_0 = 0$ ce qui implique que λ n'était pas une valeur propre de $C(a_0, \ldots, a_{n-1})$.
- − Si $P(\lambda) = 0$, on peut alors prendre pour x_n une valeur arbitraire, (par exemple $x_n = 1$). En remontant le système comme précédemment, on obtient que l'on peut obtenir un vecteur propre X_0 non nul (car $x_n \neq 0$).

On a finalement que λ est une valeur propre de $C(a_0, \ldots, a_{n-1})$ si et seulement si $P(\lambda) = 0$ où $P = X^n - a_{n-1}X^{n-1} - \cdots - a_1X - a_0$.

25. Soit $\lambda \in \mathbb{C}$ une racine de $P = X^n - \sum_{i=0}^{n-1} a_i X^i$. On reprend les calculs de la question précédente.

On peut choisir arbitrairement la valeur de x_n (non nulle car sinon $X_0=0$). Posons $x_n=1$. En remontant le système on a alors

$$x_{n-1} = (\lambda - a_{n-1})x_n = \lambda - a_{n-1}$$

puis

$$x_{n-2} = \lambda x_{n-1} - a_{n-2} x_n = \lambda^2 - a_{n-1} \lambda - a_{n-2}$$

En remontant de proche en proche on obtient que

$$x_{n-p} = \lambda^p - a_{n-1}\lambda^{p-1} - \cdots + a_{n-p}$$

L'espace propre associé est donc de dimension 1 et donné par les formules ci-dessus.

26. Soit $C \in \mathcal{M}_n(\mathbb{C})$ une matrice cyclique; alors C est semblable à $C(a_0, \ldots, a_n)$, et leurs sous-espaces propres sont isomorphes. Les sous-espaces propres de C sont donc des droites vectorielles d'après la question précédente, et on a :

$$\sum_{\lambda \in \operatorname{Sp}_{\mathbf{C}}(C)} \dim \left(\operatorname{Ker} \ (C - \lambda \mathbf{I}_n) \right) = \sum_{\lambda \in \operatorname{Sp}_{\mathbf{C}}(C)} 1 = \operatorname{card} \left(\operatorname{Sp}_{\mathbf{C}}(C) \right).$$

D'après le critère de diagonalisation, C est diagonalisable si et seulement si card $(\operatorname{Sp}_{\mathbb{C}}(C)) = n$: c'est le cas si, et seulement si C admet n valeurs propres distinctes.

- 27. Déjà fait à la question Q 2.
- 28. Soit $g \in C(f_M)$. Comme $g(x_0) \in \mathbb{C}^n = \text{Vect}_{\mathbb{C}}((x_0, f_M(x_0), \dots, f_M^{n-1}(x_0)))$ par hypothèse sur f_M et x_0 , il existe des nombres complexes $\alpha_0, \dots, \alpha_{n-1}$ tels que :

$$g(x_0) = \alpha_0 x_0 + \alpha_1 f_M(x_0) + \dots + \alpha_{n-1} f_M^{n-1}(x_0).$$

Partant de cette égalité, en utilisant le fait que f et g commutent, on montre que pour tout $k \in [0, n-1]$ on a :

$$g(f_M^k(x_0)) = f_M^k(g(x_0)) = \alpha_0 f_M^k(x_0) + \alpha_1 f_M(f_M^k(x_0)) + \dots + \alpha_{n-1} f_M^{n-1}(f_M^k(x_0)).$$

Ainsi les endomorphismes g et $\alpha_0 \operatorname{Id}_{\mathbb{C}^n} + \alpha_1 f_M + \cdots + \alpha_{n-1} f_M^{n-1}$ coïncident sur la base $(x_0, f_M(x_0), \dots, f_M^{n-1}(x))$ de \mathbb{C}^n , donc sont égaux. On a donc : $g = P(f_M)$, où l'on a posé $P = \sum_{k=0}^{n-1} \alpha_k f_M^k$.

- 29. La question Q 27 montre que $\{P(f_M) \mid P \in \mathbb{C}[X]\}$ est inclus dans $C(f_M)$, tandis que la question Q 28 montre l'inclusion réciproque. Il y a donc égalité des deux ensembles : si f_M est cyclique, alors g et f_M commutent si et seulement si g est un polynôme en f_M .
- 30. Les valeurs propres de la matrice triangulaire *N* se lisent sur la diagonale : son unique valeur propre est donc 0, avec multiplicité *n*. Par ailleurs, le rang de *N* étant *n* − 1, son noyau (qui est le sous-espace propre de *N* associé à 0) est de dimension 1 d'après le théorème du rang, manifestement engendré par le *n*-ième vecteur de la base canonique (puisque la *n*-ième colonne de *N* est nulle). Par conséquent :

$$\sum_{\lambda \in \operatorname{Sp}_{\mathbb{C}}(N)} \dim \left(\operatorname{\mathsf{Ker}} \left(N - \lambda \operatorname{I}_n \right) \right) = \dim \left(\operatorname{\mathsf{Ker}} \left(N \right) \right) = 1 < n,$$

donc N n'est pas diagonalisable.

- 31. La matrice N est égale à C(0, ..., 0) : c'est donc une matrice cyclique.
- 32. Comme N est une matrice cyclique, d'après la question \mathbb{Q} 29 l'ensemble des matrices commutant avec N est $\{P(N) \mid P \in \mathbb{C}[X]\}$: c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ engendré par les puissances de N, que nous allons déterminer. On a :

$$N = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & \ddots & & & & \vdots \\ 0 & \ddots & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & 0 \end{pmatrix}, \ N^2 = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & & & \vdots \\ 1 & \ddots & \ddots & & & \vdots \\ 0 & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & 0 \end{pmatrix}, \ \dots,$$

$$N^{n-1} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ \vdots & & \mathbf{0} & & \vdots \\ 0 & & & & \vdots \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix},$$

et $N^n = 0$. Or il s'agit précisément, d'après la base explicitée dans la question \mathbb{Q} 1, d'une base du sous-espace des matrices de Toeplitz dont on ne retient que les matrices triangulaires inférieures. Donc l'ensemble des matrices qui commutent avec N est l'ensemble des matrices de Toeplitz triangulaires inférieures.