EXERCICE I

I.1. Supposons que l'équation différentielle (E) possède une solution développable en série entière sur]-r;r[(avec r>0), notée $y:x\mapsto \sum_{n=0}^{+\infty}a_nx^n$.

En dérivant deux fois cette série entière terme à terme sur son intervalle ouvert de convergence, on obtient pour tout $x \in]-r;r[$:

$$(x^{2}-x)y'(x)=(x^{2}-x)\sum_{n=1}^{+\infty}na_{n}x^{n-1}=\sum_{n=0}^{+\infty}na_{n}x^{n+1}-\sum_{n=0}^{+\infty}na_{n}x^{n}=\sum_{n=1}^{+\infty}(n-1)a_{n-1}x^{n}-\sum_{n=0}^{+\infty}na_{n}x^{n},$$

ainsi que

$$x^{2}y''(x) = x^{2} \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n-2} = \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n} = \sum_{n=0}^{+\infty} n(n-1)a_{n}x^{n}.$$

En sommant ces développements en série entière, il vient, pour tout $x \in]-r;r[:$

$$x^{2}y''(x) + (x^{2} - x)y'(x) + 2y(x) = \sum_{n=0}^{+\infty} n(n-1)a_{n}x^{n} + \sum_{n=1}^{+\infty} (n-1)a_{n-1}x^{n} - \sum_{n=0}^{+\infty} na_{n}x^{n} + \sum_{n=0}^{+\infty} 2a_{n}x^{n}$$
$$= \sum_{n=1}^{+\infty} \left((n^{2} - 2n + 2)a_{n} + (n-1)a_{n-1} \right) x^{n} + 2a_{0}.$$

Puisque y est solution de (E), on obtient par unicité du développement en série entière les relations $\begin{cases} 2a_0 = 0 \\ \forall n \geqslant 1, \ (n^2 - 2n + 2)a_n + (n - 1)a_{n - 1} = 0 \end{cases}$

Puisque $n^2 - 2n + 2 = 1 + (n-1)^2 \neq 0$, ces relations se réécrivent $\begin{cases} a_0 = 0 \\ \forall n \geq 1, \ a_n = \frac{1-n}{1+(n-1)^2} a_{n-1} \end{cases}$, ce qui entraı̂ne la nullité de la suite $(a_n)_{n \in \mathbb{N}}$ par une récurrence immédiate.

En conclusion, on a montré qu'une telle solution est nécessairement la fonction nulle.

Il n'existe donc pas de solution non nulle de (E) qui soit développable en série entière au voisinage de 0.

EXERCICE II

On utilisera dans cet exercice les relations :

$$\forall x \in]-1;1[, \qquad \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \qquad \frac{1}{(1-x)^2} = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} x^n \right) = \sum_{n=1}^{+\infty} nx^{n-1},$$

la seconde étant obtenue par dérivation de la somme d'une série entière sur son intervalle ouvert de convergence.

De ces relations, on déduit (en évaluant en $x = \frac{1}{2}$):

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2, \qquad \sum_{n=0}^{+\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{n}{2^{n-1}} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}} = \frac{1}{2} \times \frac{1}{(1-\frac{1}{2})^2} = 2.$$

II.1. Notons $u_{i,j} = \frac{i+j}{2^{i+j}}$ pour tout couple $(i,j) \in \mathbb{N}^2$. On a:

- $u_{i,j} = u_{j,i} \ge 0$ pour tout $(i, j) \in \mathbb{N}^2$;
- pour tout $i \in \mathbb{N}$, la série $\sum_{i \geq 0} u_{i,j}$ converge. En effet, pour tout entier naturel j,

$$j^2 u_{i,j} = \frac{j^2 (i+j)}{2^{i+j}} \underset{j \to +\infty}{\sim} \frac{1}{2^i} \frac{j^3}{2^j} \underset{j \to +\infty}{\longrightarrow} 0$$

Cela implique que $u_{i,j} = o\left(\frac{1}{j^2}\right)$. On sait que la série $\sum_{j \ge 1} \frac{1}{j^2}$ converge (Riemann); par comparaison pour les séries à termes positifs la série $\sum_{i \ge 0} u_{i,j}$ converge.

De plus:

$$\sum_{j=0}^{+\infty} u_{i,j} = \sum_{j=0}^{+\infty} \frac{i}{2^{i+j}} + \sum_{j=0}^{+\infty} \frac{j}{2^{i+j}} = \frac{i}{2^i} \sum_{j=0}^{+\infty} \frac{1}{2^j} + \frac{1}{2^i} \sum_{j=0}^{+\infty} \frac{j}{2^j} = \frac{i+1}{2^{i-1}} = 4u_{i,1}$$

(en utilisant les calculs du préambule);

• la série $\sum_{i \geq 0} \left(\sum_{j=0}^{+\infty} u_{i,j}\right)$ converge, car pour tout $i \in \mathbb{N}$, $\sum_{j=0}^{+\infty} u_{i,j} = 4u_{i,1}$ par ce qui précède et parce que $\sum_{i \geq 0} u_{i,1}$ converge (et elle a même somme que $\sum_{i \geq 0} u_{1,i}$ par symétrie). On obtient concrètement : $\sum_{i=0}^{+\infty} \left(\sum_{j=0}^{+\infty} u_{i,j}\right) = \sum_{j=0}^{+\infty} 4u_{i,1} = 4\sum_{j=0}^{+\infty} u_{1,j} = 4\times 4\times u_{1,1} = 16u_{1,1}$.

On en déduit, par le théorème de sommation par paquets pour les familles à termes positifs, que la famille $(u_{i,j})_{(i,j)\in\mathbb{N}^2}$ est sommable, et sa somme vaut :

$$\sum_{(i,j)\in\mathbb{N}^2} u_{i,j} = \sum_{i=0}^{+\infty} \left(\sum_{j=0}^{+\infty} u_{i,j}\right) = 16 \times u_{1,1} = \frac{16 \times 2}{2^2} = 8.$$

II.2.

II.2.a. Les relations données définissent bien une loi de probabilité sur l'univers dénombrable \mathbb{N}^2 , puisque :

•
$$\forall (i,j) \in \mathbb{N}^2, \ \frac{i+j}{2^{i+j+3}} = \frac{u_{i,j}}{8} \geqslant 0;$$

•
$$\sum_{(i,j)\in\mathbb{N}^2} \frac{i+j}{2^{i+j+3}} = \frac{1}{8} \sum_{(i,j)\in\mathbb{N}^2} u_{i,j} = 1.$$

II.2.b. Pour tout $i \in \mathbb{N}$, on a la décomposition d'événement :

$$(X=i) = \bigcup_{i=0}^{+\infty} ((X=i) \cap (Y=j)),$$

et cette réunion est disjointe, donc

$$P(X = i) = \sum_{j=0}^{+\infty} P((X = i) \cap (Y = j)) = \sum_{j=0}^{+\infty} \frac{u_{i,j}}{8}.$$

De même, on a

$$P(Y = i) = \sum_{i=0}^{+\infty} P((X = j) \cap (Y = i)) = \sum_{i=0}^{+\infty} \frac{u_{j,i}}{8} = P(X = i),$$

puisque $u_{i,j} = u_{j,i}$.

Les variables aléatoires X et Y suivent donc la même loi, donnée par

$$\forall k \in \mathbb{N}, \qquad P(X=k) = P(Y=k) = \sum_{l=0}^{+\infty} \frac{u_{k,l}}{8} = \frac{4u_{k,1}}{8} = \frac{1}{2}u_{k,1} = \frac{k+1}{2^{k+2}}.$$

II.2.c. On a d'après l'énoncé:

$$P((X=0) \cap (Y=0)) = \frac{0+0}{2^{0+0+3}} = 0.$$

Pourtant $P(X=0) \times P(Y=0) = \frac{0+1}{2^{0+2}} \times \frac{0+1}{2^{0+2}} = \frac{1}{16} \neq P((X=0) \cap (Y=0))$, donc les variables X et Y ne sont pas indépendantes.

PROBLÈME: Fonction Digamma.

Partie préliminaire

III.1.

- a. Soit x > 0. La fonction $h_x : t \mapsto e^{-t}t^{x-1}$ est continue sur $]0, +\infty[$ par produit de fonctions continues, les fonctions exponentielle et puissances étant bien continues sur $]0, +\infty[$.
 - Au voisinage de 0 : On a $h_x(t) \sim t^{x-1} = \frac{1}{t^{1-x}}$. Comme 1-x < 1, $t \mapsto \frac{1}{t^{1-x}}$ est intégrable sur]0,1] et donc h_x aussi.
 - Au voisinage de $+\infty$: On remarque que $t^2 e^{-t} t^{x-1} = t^{x+1} e^{-t} \xrightarrow[t \to +\infty]{} 0$ par croissance comparée, d'où $h_x(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$. Or $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ et donc h_x aussi.

Finalement h_x est intégrable sur $]0, +\infty[$.

- b. Soit x>0. La fonction h_x définie dans la question précédente est continue et strictement positive sur $]0,+\infty[$. La positivité de l'intégrale nous donne $\int_0^{+\infty}h_x(t)dt\geqslant 0$ et la continuité de h_x implique qu'on ne pourrait avoir $\int_0^{+\infty}h_x(t)dt=0$ que si h_x était identiquement nulle sur $]0,+\infty[$, ce qui n'est pas le cas. Ainsi $\Gamma(x)=\int_0^{+\infty}h_x(t)dt>0$, et ce pour tout x>0.
- c. On définit $h: \left\{ \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & h_x(t) = e^{-t}t^{x-1} \end{array} \right.$ Appliquons le théorème de caractère \mathscr{C}^1 des intégrales à paramètres.
 - i) Pour tout x > 0, $t \mapsto h(x, t)$ est continue (par morceaux) et intégrable sur $]0, +\infty[$ d'après la question 1.a)
 - *ii)* Pour tout t > 0, $x \mapsto h(x, t)$ est de classe \mathscr{C}^1 (et même \mathscr{C}^∞ en fait) sur \mathbb{R}_+^* . On a

$$\forall (x,t) \in \mathbb{R}_+^* \times \mathbb{R}_+^*, \frac{\partial h}{\partial x}(x,t) = \ln(t)e^{-t}t^{x-1}$$

- iii) La fonction $(x,t) \mapsto \frac{\partial h}{\partial x}(x,t)$ vérifie les hypothèses du théorème de continuité des intégrales à paramètres
 - α) Pour tout x > 0, $t \mapsto \frac{\partial h}{\partial x}(x,t)$ est continue (donc continue par morceaux) sur \mathbb{R}_+^* .
 - β) Pour tout t > 0, $x \mapsto \frac{\partial h}{\partial x}(x, t)$ est continue sur \mathbb{R}_+^* .
 - γ) Domination locale : Soit [a, b] un segment de \mathbb{R}_+^* . On a donc $0 < a \le b$.

$$\forall (x,t) \in [a,b] \times \mathbb{R}_+^*, \ \left| \frac{\partial h}{\partial x}(x,t) \right| \leqslant \left\{ \begin{array}{l} |\ln(t)|e^{-t}t^{a-1} \text{ si } t \leqslant 1\\ \ln(t)e^{-t}t^{b-1} \text{ si } t > 1 \end{array} \right..$$

En effet $x\mapsto t^{x-1}$ est croissante si $t\geqslant 1$ et décroissante si $t\leqslant 1$. Notons donc φ la fonction définie sur \mathbb{R}_+^* par $\varphi(t) = \begin{cases} |\ln(t)|e^{-t}t^{a-1} & \text{si } t \leq 1 \\ \ln(t)e^{-t}t^{b-1} & \text{si } t > 1 \end{cases}$. Cette fonction est continue par morceaux (et même continue en fait).

De plus, pour t > 1, on a $t^2 \varphi(t) = t^{1+b} \ln(t) e^{-t}$, donc $t^2 \varphi(t) \xrightarrow[t \to +\infty]{} 0$ par croissance comparée, d'où $\varphi(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$. Et, pour $t \in]0,1]$, on a $t^{1-\frac{a}{2}}\varphi(t) = t^{\frac{a}{2}}|\ln(t)|e^{-t} \underset{t \to 0^+}{\longrightarrow} 0$ (toujours par croissance comparée, car a>0), donc $\varphi(t)=\mathop{o}\limits_{t\to 0^+}\left(\frac{1}{t^{1-\frac{a}{2}}}\right)$, avec $1-\frac{a}{2}<1$. En procédant comme en 1.a) on obtient que φ est intégrable sur $]0, +\infty[$.

On a montré l'hypothèse de domination sur tous les segments de $]0,+\infty[$.

Cela prouve finalement que Γ est de classe \mathscr{C}^1 sur $]0, +\infty[$, donc dérivable, avec :

$$\forall x > 0, \ \Gamma'(x) = \int_0^{+\infty} \frac{\partial h}{\partial x}(x, t) dt = \int_0^{+\infty} \ln(t) e^{-t} t^{x-1} dt.$$

- III.2. Pour tout entier $n \ge 2$, on pose $u_n = \int_{-1}^{n} \frac{1}{t} dt \frac{1}{n}$.
- a. Notons $f: \left\{ \begin{array}{ccc} [1,+\infty[& \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{1}{t} \end{array} \right.$ Comme la fonction f est continue (donc continue par morceaux), décroissante et à valeurs positives, un théorème du cours indique que la série $\sum_{n>2} \left(\int_{n-1}^n f(t) dt - f(n) \right)$ converge, c'est-à-dire que $\sum_{n>2} u_n$ converge.
- b. Pour tout entier $n \ge 1$, on pose $H_n = \left(\sum_{k=1}^n \frac{1}{k}\right) \ln(n)$.

Pour $n \ge 2$, on a $\sum_{k=2}^{n} u_k = \int_1^n \frac{dt}{t} - \sum_{k=2}^{n} \frac{1}{k}$ par relation de Chasles, d'où

$$\sum_{k=2}^{n} u_k = \ln(n) + 1 - \sum_{k=1}^{n} \frac{1}{k} = 1 - H_n.$$

Comme la suite $\binom{n}{k=2} u_k$ converge par la question précédente, il s'ensuit que la suite $(H_n)_{n\geqslant 1}$

Expression de la fonction Digamma à l'aide d'une série

III.3.

a. On peut établir l'inégalité souhaitée par simple étude de la fonction $x \mapsto \ln(1-x) + x$ sur $]-\infty,1[$, ou bien par un argument de convexité : en effet la fonction ln est notoirement concave sur \mathbb{R}_{+}^{*} , donc son graphe est au-dessous de chacune de ses tangentes. Comme la tangente en x = 1 a pour équation y = x - 1, on en déduit : $\forall x \in \mathbb{R}_+^*$, $\ln(x) \leq x - 1$. Il vient ensuite, via deux changements de variable successifs : $\forall x > -1$, $\ln(1+x) \le x$, puis $\forall x < 1$, $\ln(1-x) \le -x$.

Ensuite, soit $n \ge 1$ (et, normalement, x > 0 est déjà fixé aussi dès l'énoncé de la question III.3.). La fonction f_n est positive par définition.

De plus, pour tout $t \in]0, n[$, $f_n(t) = e^{n \ln(1-\frac{t}{n})} t^{x-1}$, avec $\ln(1-\frac{t}{n}) \le -\frac{t}{n}$ par la question précédente, vu qu'on a bien $\frac{t}{n} < 1$ pour $t \in]0, n[$. On en déduit, par croissance de l'exponentielle et produit par une quantité positive : $f_n(t) \leq e^{n \times \left(-\frac{t}{n}\right)} t^{x-1} = e^{-t} t^{x-1}$. Enfin f_n est nulle sur $[n, +\infty[$, tandis que la fonction $t \mapsto e^{-t}t^{x-1}$ y est positive, d'où finalement l'encadrement :

$$\forall t > 0, \ 0 \le f_n(t) \le e^{-t} t^{x-1}.$$

- b. Comme demandé, on applique le théorème de convergence dominée :
 - Pour tout $n \ge 1$, f_n est continue par morceaux sur \mathbb{R}_+^* .
 - Soit t > 0. Il existe $N \in \mathbb{N}$ tel que $N \ge t$, par exemple $N = \lfloor t \rfloor + 1$. Alors, pour tout $n \ge N$, $t \in]0, n]$, et donc $f_n(t) = (1 - \frac{t}{n})^n t^{x-1}$. Or, $(1 - \frac{t}{n})^n = e^{n \ln(1 - \frac{t}{n})}$, et $\ln(1 - \frac{t}{n}) = -\frac{t}{n} + o(\frac{1}{n})$, donc $(1 - \frac{t}{n})^n = e^{n(-\frac{t}{n} + o(\frac{1}{n}))} = e^{-t + o(1)} \xrightarrow[n \to +\infty]{} e^{-t}$ par continuité de l'exponentielle. Donc

On a ainsi prouvé que $(f_n)_{n\geq 1}$ converge simplement sur \mathbb{R}_+^* vers la fonction $t\mapsto e^{-t}t^{x-1}$.

• De plus, pour tout $n \ge 1$ et pour tout t > 0, $|f_n(t)| \le e^{-t}t^{x-1}$ par la question précédente, et on a prouvé dans la première question du problème que la fonction $t \mapsto e^{-t}t^{x-1}$ est continue et intégrable sur \mathbb{R}_{+}^{*} .

Donc, par le théorème de convergence dominée, $\int_0^{+\infty} f_n(t)dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-t}t^{x-1}dt$. Comme f_n est nulle sur $[n, +\infty[$, cela donne finalement :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \underset{n \to +\infty}{\longrightarrow} \Gamma(x),$$

et ce raisonnement a bien été mené pour tout x > 0.

III.4. Pour tout entier naturel n et tout x > 0, on pose $I_n(x) = \int_0^1 (1-u)^n u^{x-1} du$.

a. Soient $n \in \mathbb{N}^*$ et x > 0.

La fonction $\alpha: u \mapsto (1-u)^n u^{x-1}$ est bien définie et continue sur]0,1]. De plus, $\alpha(u) \underset{u \to 0^+}{\sim} u^{x-1} = \frac{1}{u^{1-x}}$, avec 1-x < 1, donc α est intégrable sur]0,1] par comparaison de fonctions positives en procédant comme à la question 1.a)

Cela assure la bonne définition de $I_n(x)$.

On définit maintenant sur]0,1] les fonctions $\alpha_1: u \mapsto (1-u)^n$ et $\alpha_2: u \mapsto \frac{u^x}{x}$. Ces fonctions sont de classe \mathscr{C}^1 , et on a $\alpha_1(u)\alpha_2(u)$ qui admet une limite finie pour $u \longrightarrow 0^+$, en l'occurrence 0. On en déduit, par intégration par parties :

$$I_n(x) = \int_0^1 \alpha_1(u)\alpha_2'(u)du = \alpha_1(1)\alpha_2(1) - \lim_{u \to 0^+} \alpha_1(u)\alpha_2(u) - \int_0^1 \alpha_1'(u)\alpha_2(u)du$$
$$= 0 - 0 + \frac{n}{x} \int_0^1 (1 - u)^{n-1} u^x du = \frac{n}{x} I_{n-1}(x+1).$$

b. Soit x > 0.

On a
$$I_0(x) = \int_0^1 u^{x-1} du = \left[\frac{u^x}{x}\right]_0^1 = \frac{1}{x}$$
.

Soit
$$n \ge 1$$
. On a, par une récurrence immédiate, $I_n(x) = \frac{n}{x} I_{n-1}(x+1) = \frac{n}{x} \times \frac{n-1}{x+1} I_{n-2}(x+2) = \frac{n!}{x(x+1)\cdots(x+n-1)} I_0(x+n) = \frac{n!}{x(x+1)\cdots(x+n)}$.

c. Via le changement de variable affine $u = \frac{t}{n}$, on obtient donc :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^1 (1 - u)^n (nu)^{x-1} n du = n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x I_n(x).$$

Le résultat de la question 3.b. se réécrit ainsi : $\Gamma(x) = \lim_{n \to +\infty} n^x I_n(x)$. Et le calcul de la question précédente permet de conclure :

$$\Gamma(x) = \lim_{n \to +\infty} n^x \times \frac{n!}{x(x+1)\cdots(x+n)} = \lim_{n \to +\infty} \frac{n!n^x}{\prod\limits_{k=0}^n (x+k)}.$$

III.5. Soient $n \in \mathbb{N}^*$ et x > 0.

L'indication donnée (fallait-il la prouver ?) est immédiate en remarquant qu'on a

$$e^{xH_n} = e^{x \sum_{k=1}^{n} \frac{1}{k}} e^{-x \ln(n)} = \left(\prod_{k=1}^{n} e^{\frac{x}{k}} \right) \times \frac{1}{n^x}$$

Ensuite, d'après la formule de Gauss établie à la question précédente, on a :

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} \frac{\prod\limits_{k=0}^{n} (x+k)}{n! n^x} = \lim_{n \to +\infty} \frac{x}{n^x} \times \frac{\prod\limits_{k=1}^{n} (k+x)}{\prod\limits_{k=1}^{n} k} = \lim_{n \to +\infty} \frac{x}{n^x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right).$$

Grâce à l'indication fournie, on réécrit :

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} x e^{xH_n} \prod_{k=1}^n \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right].$$

Or $H_n \xrightarrow[n \to +\infty]{} \gamma$ donc, par continuité de l'exponentielle, $e^{xH_n} \xrightarrow[n \to +\infty]{} e^{x\gamma}$ et, finalement, par produit de limites,

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right].$$

Cette formule est appelée formule de Weierstrass.

III.6.

a. On note qu'on pourrait répondre directement à la question à l'aide d'un DL d'ordre 2. Si l'on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

$$\prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right] \xrightarrow[n \to +\infty]{} \frac{1}{\Gamma(x) x e^{\gamma x}}.$$

Par continuité de ln, on en déduit :

$$\ln\left(\prod_{k=1}^{n}\left[\left(1+\frac{x}{k}\right)e^{-\frac{x}{k}}\right]\right)\underset{n\to+\infty}{\longrightarrow}\ln\left(\frac{1}{\Gamma(x)xe^{\gamma x}}\right), \ i. \ e.$$

$$\sum_{k=1}^{n} \left[\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right] \xrightarrow[n \to +\infty]{} - \ln \left(\Gamma(x) x e^{\gamma x} \right).$$

En particulier, on a prouvé que la série $\sum_{k\geqslant 1}\left[\ln\left(1+\frac{x}{k}\right)-\frac{x}{k}\right]$ converge. Ceci ayant été démontré pour tout x>0, on a établi la convergence simple de la série de fonctions $\sum_{k\geqslant 1}g_k$ sur $]0,+\infty[$, où l'on pose $g_k: x \mapsto \ln\left(1+\frac{x}{k}\right) - \frac{x}{k}$.

b. On note $g = \sum_{k=1}^{+\infty} g_k \text{ sur }]0, +\infty[.$

Outre la convergence de $\sum_{k>1} g_k$ vers g établie à la question précédente, on a :

- Les fonctions g_k sont toutes de classe \mathscr{C}^1 sur $]0, +\infty[$.
- Pour tout $k \ge 1$, pour tout x > 0, $g_k'(x) = \frac{1}{k+x} \frac{1}{k} = -\frac{x}{k(k+x)}$. Soit [a,b] un segment de \mathbb{R}_+^* . On a donc $0 < a \le b$. Pour tout $k \ge 1$ et tout $x \in [a,b]$, $|g_k'(x)| \le \frac{b}{k^2}$. On en déduit que

$$||g_k||_{\infty,[a,b]} \leqslant \frac{b}{k^2}$$

Comme $\sum_{k\geq 1} \frac{b}{k^2}$ converge, on a établi la convergence normale, donc uniforme, de $\sum_{k\geq 1} g_k'$ sur

On en déduit que q est de classe \mathscr{C}^1 , avec : $\forall x > 0$,

$$g'(x) = \sum_{k=1}^{+\infty} g'_k(x) = \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k}\right)$$

c. Par la question 6.a., on a, pour tout x > 0,

$$g(x) = -\ln(\Gamma(x)xe^{\gamma x}) = -\ln(\Gamma(x)) - \ln(x) - \gamma x.$$

Dérivant cette relation sur \mathbb{R}_+^* , on obtient :

$$g'(x) = -\frac{\Gamma'(x)}{\Gamma(x)} - \frac{1}{x} - \gamma,$$

c'est-à-dire, vu que $\psi = \frac{\Gamma'}{\Gamma}$, $\psi(x) = -g'(x) - \frac{1}{x} - \gamma$. Comme $-g'(x) = -\sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k}\right) = \sum_{k=1}^{+\infty} \left(-\frac{1}{k+x} + \frac{1}{k}\right)$, on a finalement établi :

$$\forall x > 0, \ \psi(x) = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right).$$

III.7.

a. Posant x=1 dans la formule précédente, on trouve : $\psi(1)=-1-\gamma+\sum\limits_{k=1}^{+\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)$, d'où, par télescopage, $\psi(1) = -1 - \gamma + 1 = -\gamma$. De plus

$$\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{X \to +\infty} [-e^{-t}]_0^X = \lim_{X \to +\infty} 1 - e^{-X} = 1$$

donc, vu que $\psi(1) = \frac{\Gamma'(1)}{\Gamma(1)}$, on obtient $\Gamma'(1) = -\gamma$.

Mais en reprenant l'expression obtenue à la question 1.c., on constate que $\Gamma'(1) = \int_{1}^{+\infty} e^{-t} \ln(t) dt$, d'où finalement :

$$\int_0^{+\infty} e^{-t} \ln(t) dt = -\gamma.$$

b. D'après la formule de la question 6.c., on a, pour tout x > 0,

$$\psi(x+1) - \psi(x) = -\frac{1}{x+1} + \frac{1}{x} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} \right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$
$$= \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} - \frac{1}{k} + \frac{1}{k+x} \right)$$

par somme de séries convergentes. Et donc :

$$\psi(x+1) - \psi(x) = \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \sum_{k=0}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{x}.$$

On aurait aussi pu procéder ainsi:

$$\psi(x+1) - \psi(x) = \frac{\Gamma'(x+1)}{\Gamma(x+1)} - \frac{\Gamma'(x)}{\Gamma(x)} = \frac{d}{dx} \left(\ln \left(\frac{\Gamma(x+1)}{\Gamma(x)} \right) \right).$$

Or, il est bien connu que $\Gamma(x+1) = x\Gamma(x)$ (il suffit d'intégrer par parties), donc

$$\psi(x+1) - \psi(x) = \frac{d}{dx} \left(\ln(x) \right) = \frac{1}{x}.$$

En particulier, pour tout $k \in \mathbb{N}^*$, $\psi(k+1) - \psi(k) = \frac{1}{k}$. Il s'ensuit, pour tout entier $n \ge 2$,

$$\psi(n) = \psi(1) + \sum_{k=1}^{n-1} \left(\psi(k+1) - \psi(k) \right) = -\gamma + \sum_{k=1}^{n-1} \frac{1}{k}.$$

c. Soit x>0 fixé. Pour tout $k\in\mathbb{N}$, on définit $j_k: \left\{ \begin{array}{l} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \frac{1}{k+y+1} - \frac{1}{k+y+x} \end{array} \right.$ Cette notation est discutable : il aurait peut-être été préférable de noter $j_{k,x}$, pour insister sur le

Cette notation est discutable : il aurait peut-être été préférable de noter $j_{k,x}$, pour insister sur le fait que l'on travaille à x > 0 fixé, et que la convergence uniforme étudiée ici ne porte que sur la variable y.

On peut réécrire

$$j_k(y) = \frac{k+y+x-k-y-1}{(k+y+1)(k+y+x)} = \frac{x-1}{(k+y+1)(k+y+x)}$$

donc,

$$\forall y > 0, \ |j_k(y)| \le \frac{|x-1|}{(k+1)(k+x)}$$
 (majoration indépendante de y)

Comme $\sum_{k\geqslant 0} \frac{|x-1|}{(k+1)(k+x)}$ est une série convergente, vu que $\frac{|x-1|}{(k+1)(k+x)} \sim \frac{|x-1|}{k^2}$, on a la convergence normale, donc uniforme, de $\sum_{k\geqslant 0} j_k$ sur $]0,+\infty[$.

Ensuite, reprenant la formule de 6.c., on a, pour tout $n \in \mathbb{N}^*$,

$$\psi(x+n) - \psi(1+n) = -\frac{1}{x+n} + \frac{1}{n} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+n} \right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+1+n} \right),$$

et selon le même principe de calcul qu'à la question précédente, on aboutit à :

$$\psi(x+n) - \psi(1+n) = \sum_{k=0}^{+\infty} \left(\frac{1}{k+1+n} - \frac{1}{k+x+n} \right) = \sum_{k=0}^{+\infty} j_k(n).$$

Or, pour tout $k \in \mathbb{N}$, $j_k(n) \underset{n \to +\infty}{\longrightarrow} 0$ donc, par le théorème de la double limite (qui s'applique ici car la série de fonctions étudiée converge uniformément sur un voisinage de $+\infty$),

$$\lim_{n\to+\infty} (\psi(x+n) - \psi(1+n)) = \sum_{k=0}^{+\infty} \lim_{n\to+\infty} j_k(n) = 0.$$

III.8. Par analyse-synthèse:

- Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en 6.c., à savoir .

$$\forall x > 0, \qquad f(x) = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$

Puisque $\frac{1}{t} = f(t+1) - f(t)$ pour tout t > 0, on a

$$\sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) = \sum_{k=1}^{+\infty} \left(f(k+1) - f(k) - f(k+x+1) + f(k+x) \right)$$

$$= \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \left(f(k+1) - f(k) \right) + \sum_{k=1}^{n} \left(f(k+x) - f(k+x+1) \right) \right)$$

$$= \lim_{n \to +\infty} \left(f(n+1) - \underbrace{f(1)}_{=-\gamma} + f(1+x) - f(n+x+1) \right)$$

$$= f(x+1) + \gamma - \lim_{n \to +\infty} \left(f(x+1+n) - f(1+n) \right) = f(x) + \frac{1}{x} + \gamma,$$

ce qui montre bien la relation voulue, et donc $f = \psi$.

Synthèse: La seule solution éventuelle au problème est donc ψ. Mais on a prouvé en 7.a., 7.b. et 7.c. que ψ satisfait les trois conditions voulues, donc finalement ψ est solution, et c'est la seule.

Autour de la fonction Digamma

III.9. Soit $n \in \mathbb{N}^*$.

- a. On suppose les boules indiscernables, ce qui implique qu'à tout moment de l'expérience, chaque boule de l'urne a la même probabilité d'être tirée, peu importe son numéro. Avec cette hypothèse, X suit la loi uniforme sur $\{1,\ldots,n\}$. On a donc, pour tout $k\in\{1,\ldots,n\}$, $P(X=k)=\frac{1}{n}$. Il s'ensuit $E(X)=\sum\limits_{k=1}^{n}kP(X=k)=\frac{1}{n}\sum\limits_{k=1}^{n}k=\frac{n(n+1)}{2n}=\frac{n+1}{2}$.
- b. Vu l'expérience, Y prend ses valeurs dans $\{1, \ldots, n\}$. Soit $k \in \{1, \ldots, n\}$.

On utilise la formule des probabilités totales, avec le système complet d'événements $\{(X = 1), (X = 2), \dots, (X = n)\}$:

$$P(Y = k) = \sum_{j=1}^{n} P_{(X=j)}(Y = k) \times P(X = j) = \frac{1}{n} \sum_{j=1}^{n} P_{(X=j)}(Y = k).$$

On calcule cette somme en distinguant selon les valeurs de j (j = k ou $j \neq k$). En effet, pour j = k, le premier tirage aura amené k boules numérotées k en plus dans l'urne, tandis que pour $j \neq k$, le premier tirage n'aura pas amené de boule numérotée k supplémentaire dans l'urne. Ainsi :

$$\begin{split} P(Y=k) &= \frac{1}{n} \left(P_{(X=k)}(Y=k) + \sum_{1 \leqslant j \leqslant n, \ j \neq k} P_{(X=j)}(Y=k) \right) = \frac{1}{n} \left(\frac{k+1}{k+n} + \sum_{1 \leqslant j \leqslant n, \ j \neq k} \frac{1}{j+n} \right), \\ &= \frac{1}{n} \left(\frac{k}{k+n} + \sum_{j=1}^{n} \frac{1}{j+n} \right). \end{split}$$

Or, par 7.b., $\psi(2n+1) - \psi(n+1) = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{j=1}^{n} \frac{1}{j+n}$, d'où finalement :

$$\forall k \in \{1, ..., n\}, \ P(Y = k) = \frac{1}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right).$$

Et il faut corriger ce que demandait l'énoncé, c'est-à-dire prouver cette relation pour tout $k \in \mathbb{N}^*$, alors qu'elle n'est valable que pour $k \in \{1, ..., n\}$.

c. On a
$$E(Y) = \sum_{k=1}^{n} kP(X=k) = \sum_{k=1}^{n} \frac{k}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right)$$
, donc :

$$E(Y) = \sum_{k=1}^{n} \frac{k^2}{n(n+k)} + \frac{n+1}{2} (\psi(2n+1) - \psi(n+1)).$$

Utilisant l'indication fournie,

$$E(Y) = \frac{1-n}{2} + n(\psi(2n+1) - \psi(n+1)) + \frac{n+1}{2}(\psi(2n+1) - \psi(n+1))$$
$$= \frac{1-n}{2} + \frac{3n+1}{2}(\psi(2n+1) - \psi(n+1)).$$

Et on est un peu perplexe devant ce résultat : était-ce ce à quoi l'énoncé voulait arriver ? Il n'était pas demandé de démontrer l'indication fournie, mais elle n'avait rien d'extraordinaire :

$$\sum_{k=1}^{n} \frac{k^2}{n(n+k)} = \sum_{k=1}^{n} \left(\frac{k}{n} - \frac{k}{n+k} \right) = \frac{n+1}{2} - \sum_{k=1}^{n} \frac{n+k-n}{n+k} = \frac{n+1}{2} - \sum_{k=1}^{n} \left(1 - \frac{n}{n+k} \right)$$

$$= \frac{n+1}{2} - n + n \sum_{k=1}^{n} \frac{1}{n+k} = \frac{1-n}{2} + n \sum_{k=1}^{2n} \frac{1}{k} = \frac{1-n}{2} + n \left(\psi(2n+1) - \psi(n+1) \right).$$