Exercice 1

Le but de l'exercice est de démontrer la formule de Stirling qui donne un équivalent de n! quand n tend vers $+\infty$:

$$n! \sim n^n e^{-n} \sqrt{2\pi n} = n^{n+1/2} e^{-n} \sqrt{2\pi}$$

- 1) a) Montrer que pour tout entier $n \ge 2$, $n \ln n = \sum_{k=2}^{n} k \ln(k) (k-1) \ln(k-1)$.
 - b) En déduire que pour tout entier $n \ge 2$, $\ln(n!) n \ln n = \sum_{k=2}^{n} (k-1) \ln \left(1 \frac{1}{k}\right)$.
- 2) Faire un développement asymptotique de $(k-1)\ln\left(1-\frac{1}{k}\right)$ pour k tendant vers $+\infty$ à l'ordre 2.
- 3) En déduire qu'il existe une suite (α_k) telle que

$$\alpha_k \sim \frac{1}{6k^2} \text{ et } \forall n \geqslant 2, \ln(n!) = n \ln n - n + 1 + \sum_{k=2}^n \frac{1}{2k} + \sum_{k=2}^n \alpha_k.$$

4) a) Montrer qu'il existe $C \in \mathbb{R}$ telle que

$$\left(\ln(n!) - \left(n + \frac{1}{2}\right)\ln(n) + n\right) \longrightarrow C.$$

On pourra utiliser qu'il existe $\gamma \in \mathbb{R}$ tel que : $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$.

b) En déduire qu'il existe une constante K telle que

$$n! \sim K n^n e^{-n} \sqrt{n}$$
.

On veut maintenant déterminer la valeur de K. Pour cela on définit pour tout entier $n \geq 0$,

$$I_n = \int_0^{\pi/2} \sin^n t \ dt.$$

- 5) a) Calculer I_0 et I_1 .
 - b) A l'aide d'une intégration par parties montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$.
 - c) En déduire des formules pour I_{2p} et I_{2p+1} . Les formules voulues font intervenir des factorielles et des puissances de 2.
- 6) a) Déterminer le sens de variation de (I_n) .
 - b) Montrer que $I_{n+2} \sim I_n$ et en déduire que $I_n \sim I_{n+1}$.
 - c) Montrer que $(n+1)I_nI_{n+1}$ est une suite constante et en déduire que $I_n \sim \sqrt{\frac{\pi}{2n}}$.
- 7) Montrer que la constante K de la question 4.b) vaut $\sqrt{2\pi}$.

Exercice 2 (135 p 11)

Soit α un réel strictement positif; on définit la suite (u_n) par $u_1 > 0$ et $\forall n \geqslant 1$, $u_{n+1} = u_n + \frac{1}{n^{\alpha}u_n}$.

- 1) Montrer que si (u_n) converge alors $\alpha > 1$.
- 2) Réciproquement, monter que si $\alpha > 1$ alors (u_n) converge.
- 3) On suppose $\alpha > 1$, et on pose $\ell = \lim_{n \to +\infty} u_n >$ Déterminer un équivalent simple de $u_n \ell$.
- 4) On suppose $\alpha \in]0,1]$. Déterminer un équivalent simple de u_n .