On étudie dans ce problème la suite $(S_n)_{n\geqslant 1}$ définie par :

$$\forall n \in \mathbb{N}^* \quad S_n = 1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} = \sum_{p=1}^n \frac{1}{p^2}$$

Dans la partie I, on détermine la limite S de la suite (S_n) . Les parties II et III sont **indépendantes**. On y explicite deux méthodes permettant d'accélérer la convergence de (S_n) vers S.

Pour tout entier n non nul, on note $R_n = S - S_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$.

- Partie I -

On considère pour tout nombre entier $p\geqslant 0$ les deux intégrales suivantes :

$$I_p = \int_0^{\frac{\pi}{2}} \cos^{2p}(t)dt$$
 ; $J_p = \int_0^{\frac{\pi}{2}} t^2 \cos^{2p}(t)dt$

- 1) Convergence de la suite $\left(\frac{J_p}{I_p}\right)$
 - a) Etablir l'inégalité suivante pour tout nombre réel $t \in [0, \frac{\pi}{2}]$: $t \leq \frac{\pi}{2} \sin(t)$.
 - b) En déduire l'encadrement suivant pour tout nombre entier $p \geqslant 0$

$$0 \leqslant J_p \leqslant \frac{\pi^2}{4} (I_p - I_{p+1})$$

- c) Exprimer I_{p+1} en fonction de I_p en intégrant par parties l'intégrale I_{p+1} .
- d) Montrer que $I_p > 0$ pour tout $p \ge 0$. Déduire des résultats précédents que $\frac{J_p}{I_p}$ tend vers 0 quand p tend vers $+\infty$.
- 2) Convergence et limite de la suite (S_n) .
 - a) Exprimer I_p en fonction de J_p et J_{p-1} en intégrant deux fois par parties l'intégrale I_p $(p \ge 1)$.
 - b) En déduire la relation suivante pour $p \ge 1$:

$$\frac{J_{p-1}}{I_{p-1}} - \frac{J_p}{I_p} = \frac{1}{2p^2}$$

c) Calculer J_0 et I_0 , puis déterminer la limite S de la suite (S_n) .

On désigne par :

- E l'espace vectoriel des fonctions continues de $]0, +\infty[$ dans \mathbb{R} et de limite nulle en $+\infty$.
- f_k la fonction de E définie pour tout nombre entier naturel k par :

$$f_0(x) = \frac{1}{x}$$
 et $f_k(x) = \frac{1}{x(x+1)(x+2)...(x+k)}$ pour $k \geqslant 1$.

 \bullet Δ l'application associant à toute fonction f de E la fonction Δf définie pour x>0 par :

$$(\Delta f)(x) = f(x+1) - f(x).$$

- 3) Sommation de séries télescopiques
 - a) Etablir que Δ est un endomorphisme de l'espace vectoriel E.
 - b) Etablir pour toute fonction f appartenant à E la convergence de la série $\sum \left((\Delta f)(p)\right)_{p\geqslant 1}$ et calculer pour tout nombre entier naturel n les sommes suivantes :

$$\sum_{p=1}^{+\infty} (\Delta f)(p) \quad \text{et} \quad \sum_{p=n+1}^{+\infty} (\Delta f)(p)$$

- c) Exprimer Δf_{k-1} en fonction de k et de f_k pour $k \ge 1$.
- d) i) Etablir pour tout nombre entier naturel $k \ge 1$ la convergence de la série $\sum (f_k(p))_{p \ge 1}$.
 - ii) Montrer que pour tout nombre entier naturel n:

$$\sum_{p=n+1}^{+\infty} f_k(p) = \frac{1}{k} \frac{1}{(n+1)(n+2)...(n+k)}$$

- 4) a) Soit n un entier supérieur à 1; en utilisant la technique de comparaison à une intégrale, donner un encadrement de R_n : on commencera par encadrer $\sum_{k=n+1}^N \frac{1}{k^2}$ pour N>n.
 - b) Déterminer un naturel N_0 suffisant pour que R_{N_0} soit inférieur à 10^{-2} (ainsi, S_{N_0} sera une approximation rationnelle de S à 10^{-2} près).
 - c) Donner un équivalent simple de R_n .

Dans la suite de cette partie, on posera : $a_q(p) = \frac{1}{p^2} - \sum_{k=1}^q (k-1)! f_k(p)$ pour $p \ge 1$ et $q \ge 1$.

Nous allons utiliser cette suite pour obtenir une approximation rationnelle de S à 10^{-2} près en utilisant une somme partielle S_{N_1} avec N_1 plus petit que N_0 .

- 5) Une première accélération et principe de la méthode
 - a) Vérifier que pour $p \ge 1$: $a_1(p) = \frac{1}{p} f_1(p)$.
 - b) Montrer que pour tout entier $n \ge 1$: $R_n \frac{1}{n+1} = \sum_{p=n+1}^{+\infty} \frac{1}{p} f_1(p)$.

 On pourra utiliser la question 3)d)ii).

c) En déduire l'encadrement suivant pour $n \ge 1$:

$$0 \leqslant R_n - \frac{1}{n+1} \leqslant \frac{1}{(n+1)^2}$$

d) Déterminer un entier naturel N_1 suffisant pour que $\left|S - \left(S_{N_1} + \frac{1}{N_1 + 1}\right)\right|$ soit inférieur à 10^{-2} .

Le comparer à N_0 question 2) : c'est le principe de l'accélération de convergence : on a rajouté un terme correctif à S_n , le résultat convergeant plus rapidement que (S_n) vers S.

- 6) Cas général
 - a) Etablir la relation suivante pour $p \ge 1$ et $q \ge 1$:

$$a_q(p) = \frac{1}{p^2} - \sum_{k=1}^{q} (k-1)! f_k(p) = \frac{q!}{p} f_q(p)$$

On pourra raisonner par récurrence sur q.

b) En déduire l'encadrement suivant pour $n \ge 1$ et $q \ge 1$:

$$0 \leqslant \sum_{p=n+1}^{+\infty} \frac{1}{p^2} - \sum_{k=1}^{q} \frac{(k-1)!}{k(n+1)...(n+k)} \leqslant \frac{(q-1)!}{(n+1)^2(n+2)...(n+q)}$$

c) En déduire, l'entier $q \ge 1$ étant fixé, une suite (S'_n) de nombres rationnels telle que :

$$\forall n \geqslant 1 \quad 0 \leqslant \frac{\pi^2}{6} - S'_n \leqslant \frac{(q-1)!}{(n+1)^2(n+2)...(n+q)}$$

d) Expliciter S'_n et l'encadrement précédent lorsque q=2.

- Partie III -

On accélère ici la convergence de la suite (S_n) vers sa limite S en effectuant un développement limité de S_n suivant les puissances de $\frac{1}{n}$.

7) Nombres de Bernoulli

Démontrer qu'il existe une et une seule suite de nombres réels (u_n) telle que $u_0 = 1$ et

$$\sum_{p=1}^{n} \frac{u_{n-p}}{p!} = 0 \text{ pour tout nombre entier } n \geqslant 2.$$

Etablir que les u_n sont rationnels et donner u_1, u_2, u_3 sous forme de fraction irréductible.

- 8) Etude des polynômes de Bernoulli
 - a) On considère la suite de polynômes (U_n) définie par :

$$U_0 = 1$$
 et $U_n = \sum_{p=0}^n \frac{u_{n-p}X^p}{p!}$ pour tout nombre entier $n \geqslant 1$.

- i) Préciser U_1, U_2, U_3 .
- ii) Montrer que $U'_n = U_{n-1}$ pour tout $n \ge 1$ et $U_n(0) = U_n(1)$ pour tout $n \ge 2$.

b) On considère une suite de polynômes (V_n) vérifiant :

$$V_0 = 1, V'_n = V_{n-1}$$
 pour $n \ge 1$ et $V_n(0) = V_n(1)$ pour $n \ge 2$.

i) Etablir que $V_n^{(p)} = V_{n-p}$ pour $0 \le p \le n$ et en déduire la formule suivante :

$$\forall n \in \mathbb{N}$$
 , $V_n = \sum_{p=0}^n \frac{V_{n-p}(0)X^p}{p!}$

ii) Etablir la formule suivante pour tout nombre entier $n \geqslant 2$:

$$\sum_{n=1}^{n} \frac{V_{n-p}(0)}{p!} = 0$$

- iii) Etablir enfin que $V_n = U_n$ pour tout nombre entier naturel n.
- c) En déduire l'égalité $U_n = (-1)^n U_n (1 X)$ pour tout nombre entier naturel n. Montrer alors que $u_{2p+1} = 0$ pour tout $p \ge 1$.
- 9) Formule d'Euler-Mac Laurin et accélération de la convergence
 - a) Etablir pour $p \ge 1$ et $q \ge 0$ la relation suivante :

$$\int_0^1 \frac{dx}{(x+p)^2} - \frac{1}{2} \left(\frac{1}{p^2} + \frac{1}{(p+1)^2} \right) + \sum_{k=1}^q (2k)! u_{2k} \left(\frac{1}{p^{2k+1}} - \frac{1}{(p+1)^{2k+1}} \right) = (2q+2)! \int_0^1 \frac{U_{2q+1}(x) dx}{(x+p)^{2q+3}} dx$$

On pourra raisonner par récurrence sur q et intégrer deux fois par parties le membre de droite.

b) En déduire l'inégalité suivante pour $n \ge 1$ et $q \ge 0$:

$$\left| \sum_{p=n+1}^{+\infty} \frac{1}{p^2} - \frac{1}{n} + \frac{1}{2n^2} - \sum_{k=1}^{q} \frac{(2k)! u_{2k}}{n^{2k+1}} \right| \leqslant \frac{(2q+1)! \ M_{2q+1}}{n^{2q+2}}$$

où M_{2q+1} désigne le maximum de la fonction continue $|U_{2q+1}|$ sur le segment [0,1].

c) En déduire, l'entier $q\geqslant 1$ étant fixé, une suite (S_n'') de nombres rationnels telle que :

$$\forall n \geqslant 1 \quad \left| \frac{\pi^2}{6} - S_n'' \right| \leqslant \frac{(2q+1)! M_{2q+1}}{n^{2q+2}}$$

Expliciter S_n'' et l'inégalité précédente lorsque q=2 sans chercher à calculer M_5 .