1. Calculer $\lim_{n \to +\infty} \int_0^{+\infty} \frac{n \cos(t)}{1 + n^2 t^2} dt$.

On pourra commencer par faire un changement de variables.

Corrigé

Soit $n \ge 1$. Posons $I_n = \int_0^{+\infty} \frac{n \cos(t)}{1 + n^2 t^2} dt$. On commence par poser u = nt. La fonction $t \mapsto nt$ est strictement croissante, de classe \mathscr{C}^1 et réalise une bijection de $[0,+\infty[$ dans $[0,+\infty[$. L'intégrale I_n est de même nature que

$$J_n = \int_0^{+\infty} \frac{\cos\left(\frac{u}{n}\right)}{1 + u^2} dt$$

Posons alors $f_n: u \mapsto \frac{\cos(\frac{u}{n})}{1+u^2}$. Ce sont des fonctions continues sur $[0, +\infty[$, la suite (f_n) converge simplement vers la fonction $f: u \mapsto \frac{\cos(\frac{u}{n})}{1+u^2} = \frac{1}{1+u^2}$ elle même continue sur $[0, +\infty[$. Pour finir, pour tout $u \in [0, +\infty[$ et tout $n \in \mathbb{N}^*, |f_n(u)| \le f(u)$. La fonction f est intégrable sur $[0, +\infty[$ car $f(u) \underset{u \to \infty}{\sim} \frac{1}{u^2}$ et $u \mapsto \frac{1}{u^2}$ est intégrable sur $[1, +\infty[$.

En appliquant le théorème de convergence dominée, les intégrales J_n converge (et donc les intégrales I_n aussi) et

$$\lim_{n \to +\infty} I_n = \int_0^{+\infty} \frac{1}{1 + u^2} du = \frac{\pi}{2}$$

2. Soit *a*, *b* deux réels strictement positifs, montrer que

$$\int_0^{+\infty} \frac{xe^{-ax}}{1 - e^{-bx}} dx = \sum_{n=0}^{+\infty} \frac{1}{(a + bn)^2}$$

Corrigé

Soit $x \in]0, +\infty[, e^{-bx} \in]-1, 1[$ donc

$$\frac{xe^{-ax}}{1 - e^{-bx}} = xe^{-ax} \sum_{n=0}^{\infty} (e^{-bx})^n = \sum_{n=0}^{\infty} xe^{-(a+bn)x}$$

Posons $f_n: x \mapsto xe^{-(a+bn)x}$. Ce sont des fonctions continues sur $]0, +\infty[$ et la série de fonctions $\sum_{n\geq 0} f_n$ converge simplement vers $S: x \mapsto \frac{xe^{-ax}}{1-e^{-bx}}$.

Soit $n \in \mathbb{N}$, montrons que la fonction f_n est intégrable sur $]0, +\infty[$.

- La fonction f_n se prolonge par continuité en 0 en posant $f_n(0) = 0$; elle est donc intégrale sur]0,1].
- On voit que $x^2 f_n(x) \sim x^3 e^{-ax}$ car $e^{-bx} \longrightarrow x^3 e^{-ax}$ 0. Cela montre que $f_n(x) = o_{+\infty} \left(\frac{1}{x^2}\right)$. Comme de plus $x \mapsto \frac{1}{x^2}$ est intégrable sur [1, +∞[, f_n aussi.

De plus,

$$\int_0^\infty |f_n| = \int_0^\infty f_n$$

$$= \int_0^\infty x e^{-(a+bn)x} dx$$

$$= \left[-\frac{x e^{-(a+bn)x}}{a+bn} \right]_0^\infty + \frac{1}{a+bn} \int_0^\infty e^{-(a+bn)x} dx \text{ car le crochet converge et vaut 0}$$

$$= \frac{1}{a+bn} \left[-\frac{e^{-(a+bn)x}}{a+bn} \right]_0^\infty$$

$$= \frac{1}{(a+bn)^2}$$

On en déduit que $\int_0^\infty |f_n| \underset{n\to\infty}{\sim} \frac{1}{b^2 n^2}$ et donc la série $\sum_{n\geqslant 0} \int_0^\infty |f_n|$ converge.

Par le théorème d'intégration terme à terme, la fonction S est intégrable et

$$\int_0^{+\infty} \frac{xe^{-ax}}{1 - e^{-bx}} dx = \sum_{n=0}^{+\infty} \int_0^{\infty} xe^{-(a+bn)x} dx = \sum_{n=0}^{+\infty} \frac{1}{(a+bn)^2}$$