Soit n un entier naturel supérieur ou égal à 2.

On note $E = \mathbb{C}_n[X]$ l'espace vectoriel des polynômes à coefficients complexes de degré inférieur ou égal à n, et $\mathscr{B} = (1, X, \dots, X^n)$ la base canonique de E.

On note, pour tout polynôme P de E

$$\varphi(P) = \frac{1}{n}X(1-X)P' + XP$$

Partie I - Étude d'un endomorphisme de polynômes

- 1. Justifier que si $P \in \mathbb{C}_n[X]$ alors $\varphi(P) \in \mathbb{C}_n[X]$. Ainsi, φ qui est linéaire est un endomorphisme de E.
- 2. Écrire la matrice de φ dans la base \mathscr{B} .
- 3. a) Soit P un polynôme non nul que l'on note $P = \alpha \prod_{i=1}^{m} (X a_i)^{r_i}$. Rappeler la décomposition en éléments simples de la fraction rationnelle $\frac{P'}{P}$.
 - b) Soit P un polynôme non nul et $\lambda \in \mathbb{C}$, montrer que

$$\varphi(P) = \lambda P \iff \frac{P'}{P} = \frac{n(\lambda - X)}{X(1 - X)}$$

- c) En déduire les valeurs propres et les espaces propres de φ .
- 4. Justifier que φ est diagonalisable.

Partie II - Étude d'une suite de variables aléatoires

On considère une urne contenant n boules numérotées de 1 à n, indiscernable au toucher. On effectue dans cette urne une suite de tirages avec remise, et on suppose que l'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) .

On note alors pour tout k de \mathbb{N}^* , Y_k le nombre de numéros distincts qui ont été tirés lors des k premiers tirages ¹.

Par convention, on pose $Y_0 = 0$.

- 5. On note, pour tout k de \mathbb{N}^* , Z_k la variable aléatoire prenant la valeur 1 si le k-ième tirage amène un numéro qui n'a pas été tiré lors des tirages précédents, et prenant la valeur 0 sinon ². On pourra remarquer que, en particulier, $Z_1 = 1$.
 - a) Déterminer la loi de Z_2 .
 - b) Soit $k \in \mathbb{N}^*$. Calculer, pour tout j de [1, k], la valeur de $P_{[Y_k=j]}(Z_{k+1}=1)$. En déduire : $P(Z_{k+1}=1)=1-\frac{1}{n}E(Y_k)$.

^{1.} On peut, plus sérieusement, considérer $(X_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes sur un espace probabilisé (Ω, \mathcal{A}, P) suivant toutes la loi uniforme sur l'ensemble $[\![1,n]\!]$, puis noter pour tout $k\in\mathbb{N}^*$, $Y_k:\omega\mapsto \operatorname{Card}\{X_1(\omega),\ldots,X_k(\omega)\}$.

^{2.} On peut définir Z_k comme l'indicatrice de l'événement $\{\omega \in \Omega, X_k(\omega) \notin \{X_1(\omega), \dots, X_{k-1}(\omega)\}\}$.

c) Soit $k \in \mathbb{N}^*$. En remarquant que $Y_k = \sum_{j=1}^k Z_j$, montrer :

$$P(Z_{k+1} = 1) = 1 - \frac{1}{n} \sum_{j=1}^{k} P(Z_j = 1).$$

- d) En déduire, pour tout k de \mathbb{N}^* : $P(Z_k = 1) = \left(1 \frac{1}{n}\right)^{k-1}$.
- e) Déterminer alors, pour tout k de \mathbb{N} , l'espérance de Y_k .
- 6. On note, pour tout k de \mathbb{N} , G_k le polynôme de $\mathbb{C}_n[X]$ défini par :

$$G_k = \sum_{i=0}^n P(Y_k = i)X^i.$$

- a) Déterminer les polynômes G_0 , G_1 et G_2 .
- b) Montrer, pour tout k de \mathbb{N} et tout i de $\llbracket 0, n \rrbracket$:

$$P(Y_{k+1} = i) = \frac{i}{n}P(Y_k = i) + \left(1 - \frac{i-1}{n}\right)P(Y_k = i-1).$$

c) Montrer, pour tout k de \mathbb{N} :

$$G_{k+1} = \frac{1}{n}X(1-X)G'_k + XG_k.$$

d) En déduire, pour tout k de \mathbb{N} :

$$G_k = \varphi^k(G_0).$$

- 7. a) Pour tout k de \mathbb{N} , calculer $G_k(1)$ et $G'_k(1)$.
 - b) En déduire, pour tout k de \mathbb{N} :

$$E(Y_{k+1}) = \left(1 - \frac{1}{n}\right) E(Y_k) + 1.$$

- c) Retrouver alors, pour tout k de \mathbb{N} , l'expression de $E(Y_k)$ obtenue en question 5.e).
- 8. Pour tout j de [0, n] on pose $P_j = X^j (1 X)^{n-j}$.
 - a) Calculer $\sum_{j=0}^{n} \binom{n}{j} P_j$.
 - b) Montrer, pour tout j de [0, n]:

$$P_{j} = \sum_{i=j}^{n} {n-j \choose i-j} (-1)^{i-j} X^{i}.$$

c) En déduire, pour tout k de $\mathbb N$:

$$\varphi^k(G_0) = \sum_{i=0}^n \left(\sum_{j=0}^i \binom{n}{j} \binom{n-j}{i-j} \left(\frac{j}{n} \right)^k (-1)^{i-j} \right) X^i.$$

d) Montrer finalement, pour tout k de \mathbb{N} et pour tout i de [0, n]:

$$P(Y_k = i) = \binom{n}{i} \sum_{j=0}^{i} \binom{i}{j} (-1)^{i-j} \left(\frac{j}{n}\right)^k.$$