Partie I

1. Pour tout $n \in \mathbb{N}^*$, $P(X = n) \ge 0$ (car $\zeta(x) > 1 > 0$) De plus, dans $[0, +\infty]$;

$$\sum_{n=1}^{+\infty} \frac{1}{\zeta(x)n^x} = \frac{1}{\zeta(x)} \sum_{n=1}^{+\infty} \frac{1}{n^x} = \frac{1}{\zeta(x)} \zeta(x) = 1$$

On en déduit la formule donnée définie bien une loi de probabilité sur N*.

2. Pour tout $a \in \mathbb{N}^*$,

$$P(X \in a\mathbb{N}^*) = P\left(\bigcup_{k=1}^{+\infty} (X = ka)\right) \quad \text{(par définition de } a\mathbb{N}^*\text{)}$$

$$= \sum_{k=1}^{+\infty} P(X = ka) \quad \text{(événements incompatibles)}$$

$$= \sum_{k=1}^{+\infty} \frac{1}{\zeta(x)} \frac{1}{(ak)^x} = \frac{1}{\zeta(x)a^x} \sum_{n=1}^{+\infty} \frac{1}{n^x} = \frac{1}{\zeta(x)a^x} \zeta(x) = \frac{1}{a^x}.$$

Partie II

3. Par définition, pour monter que la famille $((X = p_i \mathbb{N}^*))_{i \in \mathbb{N}^*}$ est une famille d'événements indépendants, il faut montrer que pour toute sous famille $(i_1, ..., i_r)$ d'éléments distincts de \mathbb{N}^* , $P(\bigcap_{k=1}^r (X \in p_{i_k} \mathbb{N}^*)) = \prod_{i=1}^r P(X \in p_{i_k} \mathbb{N}^*)$

On considère donc $(i_1,...,i_r)$ des éléments distincts de \mathbb{N}^* . On sait que pour $\omega \in \Omega$,

$$\omega \in \bigcap_{k=1}^{r} (X \in p_{i_k} \mathbb{N}^*) \iff \forall k \in [1, k], \quad \omega \in (X \in p_{i_k} \mathbb{N}^*)$$

$$\iff \forall k \in [1, k], p_{i_k} | X(\omega)$$

$$\iff \left(\prod_{i=1}^{k} p_{i_k}\right) | X(\omega) \quad \text{(car les } p_i \text{ sont premiers entre eux)}$$

$$\iff \omega \in (X \in a \mathbb{N}^*) \quad \text{(où } a = \prod_{k=1}^{r} p_{i_k})$$

On en déduit que

$$P\left(\bigcap_{k=1}^{r}(X \in p_{i_k}\mathbb{N}^*)\right) = P(X \in a\mathbb{N}^*) = \frac{1}{a^x} = \left(\prod_{k=1}^{r}p_{i_k}\right)^{-x} = \prod_{k=1}^{r}p_{i_k}^{-x} = \prod_{i=1}^{r}P(X \in p_{i_k}\mathbb{N}^*)$$

On a bien montré que la famille $((X = p_i \mathbb{N}^*))_{i \in \mathbb{N}^*}$ est une famille d'événements indépendants.

4. Par continuité décroissante, on a

$$\lim_{n \to +\infty} P(B_n) = P\left(\bigcap_{k=1}^{+\infty} (X \notin p_k \mathbb{N}^*)\right).$$

Or, pour tout $\omega \in \Omega$,

$$\omega \in \bigcap_{k=1}^{+\infty} (X \not\in p_k \mathbb{N}^*) \iff \forall k \in \mathbb{N}^*, \quad \omega \in (X \not\in p_k \mathbb{N}^*)$$

$$\iff \forall k \in \mathbb{N}^*, \quad p_k \not\mid X(\omega)$$

$$\iff \forall p \in \mathscr{P}, \quad p \not\mid X(\omega)$$

$$\iff X(\omega) = 1$$

donc

$$\lim_{n \to +\infty} P(B_n) = P\left(\bigcap_{k=1}^{+\infty} (X \notin p_k \mathbb{N}^*)\right) = P(X=1).$$

Par suite, pour tout $x \in]1, +\infty[$,

$$\frac{1}{\zeta(x)} = P(X = 1) = \lim_{n \to +\infty} P(B_n) = \lim_{n \to +\infty} P\left(\bigcap_{k=1}^n (X \notin p_k \mathbb{N}^*)\right)$$

$$= \lim_{n \to +\infty} \prod_{k=1}^n P(X \notin p_k \mathbb{N}^*) \quad \text{(indépendance prouvée à la question 3)}$$

$$= \lim_{n \to +\infty} \prod_{k=1}^n (1 - P(X \in p_k \mathbb{N}^*)) = \lim_{n \to +\infty} \prod_{k=1}^n \left(1 - \frac{1}{p_k^x}\right) \quad \text{(d'après la question 2)}.$$

5. On veut calculer $\lim_{x\to 1^+} \zeta(x)$. On remarque que la fonction ζ est décroissante sur $]1,+\infty[$. En effet, soit $1 < x \leqslant y$, pour tout entier $n \geqslant 1, \frac{1}{n^x} \geqslant \frac{1}{n^y}$. On en déduit que pour tout $n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{k^x} \geqslant \sum_{k=1}^n \frac{1}{k^y}$. En faisant tendre n vers $+\infty$ on obtient bien que $\zeta(x) \geqslant \zeta(y)$. On en déduit que ζ admet une limite notée $\ell \in \mathbb{R} \cup \{+\infty\}$ en 1^+ .

De plus, pour tout entier n et tout $x \in]1, +\infty[$, $\zeta(x) \geqslant \sum_{k=1}^{n} \frac{1}{k^{x}}$. En faisant tendre x vers 1^{+} on en déduit que $\ell \geqslant \sum_{k=1}^{n} \frac{1}{k}$. Il suffit alors de faire tendre n vers $+\infty$ et d'utiliser que la série harmonique diverge pour obtenir que

$$\lim_{x \to 1^+} \zeta(x) = \ell = +\infty$$

Tous les termes étant strictement positifs et la fonction ln étant continue, la formule prouvée à la question 4) devient :

$$\forall x \in]1, +\infty[, -\ln(\zeta(x)) = \lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(1 - \frac{1}{p_k^x}\right) = \sum_{k=1}^{+\infty} \ln\left(1 - \frac{1}{p_k^x}\right)$$

Supposons par l'absurde que la série $\sum_{k\geqslant 1}\frac{1}{p_k}$ converge. Par comparaison pour les séries à termes négatifs, la série $\sum_{k\geqslant 1}\ln\left(1-\frac{1}{p_k}\right)$ converge aussi car $\ln\left(1-\frac{1}{p_k}\right) \underset{k\to\infty}{\sim} \frac{1}{p_k}$. Posons $f_k: x\mapsto \ln\left(1-\frac{1}{p_k^x}\right)$ définie sur $]1,+\infty[$. La fonction $x\mapsto \frac{1}{p_k^x}$ est décroissante donc f_k est croissante. En voyant alors que f_k est à valeurs négatives, on obtient que $|f_k|=-f_k$ est décroissante. On en déduit que

$$||f_k||_{\infty,]1,+\infty[} = \lim_{x \to 1^+} f_k(x) = \ln\left(1 - \frac{1}{p_k}\right)$$

Cela montre que la série de fonctions $\sum_{k\geqslant 1}f_k$ converge normalement donc uniformément au voisinage de 1. On peut donc appliquer le théorème de la double limite :

$$\sum_{k=1}^{+\infty} \ln\left(1 - \frac{1}{p_k}\right) = \lim_{x \to 1^+} \sum_{k=1}^{+\infty} f_k(x) = \lim_{x \to 1^+} -\ln(\zeta(x)) = -\infty$$

La dernière égalité venant de la limite prouvée en début de question.

C'est donc absurde ; cela prouve que la série $\sum_{k>1} \frac{1}{p_k}$ diverge.

Partie III

6. a) On considère donc $(i_1, ..., i_r)$ des éléments distincts de \mathbb{N}^* .

$$C_{i_1} \cap \cdots \cap C_{i_r} = ((X \in p_{i_1} \mathbb{N}^*) \cap \cdots (X \in p_{i_r} \mathbb{N}^*)) \cap ((Y \in p_{i_1} \mathbb{N}^*) \cap \cdots (Y \in p_{i_r} \mathbb{N}^*))$$

En utilisant que les variables aléatoires X et Y sont indépendantes puis en utilisant les résultats de la question 3), on obtient

$$P(C_{i_{1}} \cap \cdots \cap C_{i_{r}}) = P((X \in p_{i_{1}}\mathbb{N}^{*}) \cap \cdots (X \in p_{i_{r}}\mathbb{N}^{*})) \times P((Y \in p_{i_{1}}\mathbb{N}^{*}) \cap \cdots (Y \in p_{i_{r}}\mathbb{N}^{*}))$$

$$= \prod_{k=1}^{r} P(X \in p_{i_{k}}\mathbb{N}^{*}) \times \prod_{k=1}^{r} P(Y \in p_{i_{k}}\mathbb{N}^{*})$$

$$= \prod_{k=1}^{r} P(C_{i_{k}})$$

Cela montre que les événement $(C_k)_{k\in\mathbb{N}^*}$ sont indépendants.

b) On voit alors que

$$A = \bigcap_{p \in \mathcal{P}} \overline{(X \in p\mathbb{N}^*) \cap (Y \in p\mathbb{N}^*)} = \bigcap_{k=1}^{+\infty} \overline{C_k}$$

c) On a montré à la question 6.a) que les événement $(C_k)_{k\in\mathbb{N}^*}$ sont indépendants, les complémentaires $(\overline{C_k})_{k\in\mathbb{N}^*}$ sont aussi indépendants. D'après la propriété de la continuité décroissante, on a :

$$P(A) = P\left(\bigcap_{k=1}^{+\infty} \overline{C_k}\right) = \lim_{n \to +\infty} P\left(\bigcap_{k=1}^{n} \overline{C_k}\right) = \lim_{n \to +\infty} \prod_{k=1}^{n} P\left(\overline{C_k}\right) = \lim_{n \to +\infty} \prod_{k=1}^{n} (1 - P\left(C_k\right))$$

Or

$$\prod_{k=1}^{n} (1 - P(C_k)) \stackrel{\text{indep.}}{=} \prod_{k=1}^{n} (1 - P(X \in p_k \mathbb{N}^*) P(Y \in p_k \mathbb{N}^*)) = \prod_{k=1}^{n} \left(1 - \frac{1}{p_k^{2x}}\right)$$

Finalement, en utilisant la question 4)

$$P(A) = \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{1}{p_k^{2x}} \right) = \frac{1}{\zeta(2x)}$$

Partie IV

7. Par définition du PGCD, pour tout $\omega \in \Omega$,

$$W_n(\omega) \in k\mathbb{N}^* \iff k \mid U_n(\omega) \wedge V_n(\omega) \iff (k \mid U_n(\omega) \text{ et } k \mid V_n(\omega))$$

On en déduit que

$$P(W_n \in k\mathbb{N}^*) = P((U_n \in k\mathbb{N}^*) \cap (V_n \in k\mathbb{N}^*))$$

= $P(U_n \in k\mathbb{N}^*) P(V_n \in k\mathbb{N}^*)$ (U_n et V_n indépendantes)
= $P(U_n \in k\mathbb{N}^*)^2$ (même loi).

Or, les entiers j de $[\![1,n]\!]$ vérifiant $k \mid j$ sont les éléments de $k\mathbb{N}^* \cap [\![1,n]\!]$, c'est-à-dire les entiers qui s'écrivent ki avec $i \in \mathbb{N}^*$ vérifiant $1 \leqslant ki \leqslant n \Leftrightarrow 1 \leqslant i \leqslant n/k \Leftrightarrow 1 \leqslant i \leqslant \lfloor n/k \rfloor$ (car i est un entier).

On a donc $\{j \in [1, n], k \mid j\} = \{ki, i \in [1, \lfloor n/k \rfloor]\}.$

Enfin, comme $U_n \hookrightarrow \mathscr{U}(\llbracket 1, n \rrbracket)$, on obtient :

$$P(W_n \in k\mathbb{N}^*) = P(U_n \in k\mathbb{N}^*)^2 = \left(\frac{\operatorname{Card}\{ki , i \in [1, \lfloor n/k \rfloor]\}\}}{\operatorname{Card}[1, n]}\right)^2 = \left(\frac{\lfloor n/k \rfloor}{n}\right)^2.$$

8. a) Soit $\omega \in \Omega$,

$$\omega \in (W_n = 1) \iff W_n(\omega) = 1 \iff \forall p_i \in \mathscr{P}, p_i \nmid W_n(\omega)$$

On en déduit que ω n'appartient pas à $(W_n = 1)$ si et seulement s'il existe un nombre premier qui divise $W_n(\omega)$. Cela signifie

$$\overline{(W_n = 1)} = \bigcup_{p \in \mathscr{P}} (W_n \in p\mathbb{N}^*) = \bigcup_{\substack{p \in \mathscr{P} \\ p \leqslant n}} (W_n \in p\mathbb{N}^*)$$

La deuxième égalité venant du fait que pour tout $\omega \in \Omega$, U_n et V_n sont inférieurs à n et donc leur PGCD aussi.

b) Notons d l'entier tel que p_d soit le plus grand nombre premier inférieur ou égal à n. On a par la formule du crible

$$P\left(\bigcup_{i=1}^{d} (W_n \in p_i \mathbb{N}^*)\right) = \sum_{k=1}^{d} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le d} P\left((W_n \in p_{i_1} \mathbb{N}^*) \cap \dots \cap (W_n \in p_{i_k} \mathbb{N}^*)\right)$$

On en déduit que

$$P(W_n = 1) = 1 + \sum_{k=1}^{d} (-1)^k \sum_{k \in A(n,k)} (W_n \in k\mathbb{N}^*)$$

où A(n,k) est l'ensemble des nombres qui s'écrivent comme un produit de k nombres premiers deux à deux distincts inférieurs à n. On en déduit que

$$P(W_n = 1) = \frac{1}{n^2} \sum_{k=1}^{+\infty} \mu(k) \left(\left\lfloor \frac{n}{k} \right\rfloor \right)^2$$

en remarquant

— Le terme pour k=1 de la somme de droite vaut 1, car 1 est le produit de 0 nombres premiers.

- Les termes de la somme de droite pour l'indice k où k est divisible par un nombre premier strictement supérieur à n sont nuls car dans ce cas, $\lfloor \frac{n}{k} \rfloor$ est nul.
- c) Pour tout entier k non nul, on pose $f_k: n \mapsto \frac{1}{n^2}\mu(k) \left(\lfloor \frac{n}{k} \rfloor\right)^2$. En utilisant que pour tout $x \in \mathbb{R}_+$, $\lfloor x \rfloor \leqslant x$, on obtient que pour tout $n \in \mathbb{N}$,

$$|f_k(n)| \leqslant \frac{1}{n^2} \left(\frac{n}{k}\right)^2 \leqslant \frac{1}{k^2}$$

On en déduit que $||f_k||_{\infty,\mathbb{N}} \leqslant \frac{1}{k^2}$. Comme la série $\sum_{k\geqslant 1} \frac{1}{k^2}$, la série de fonctions $\sum_{k\geqslant 1} f_k$ converge normalement sur N. Elle converge donc uniformément sur N. Appliquons alors le théorème de la double limite:

— Pour tout $k \geqslant 1$, $\lim_{n \to +\infty} f_k(n) = \frac{\mu(k)}{k^2}$ puisque

$$\frac{1}{n^2} \left(\frac{n}{k} - 1 \right)^2 \leqslant \frac{1}{n^2} \left(\left\lfloor \frac{n}{k} \right\rfloor \right)^2 \leqslant \frac{1}{k^2}$$

— La série de fonctions $\sum_{k\geq 1} f_k$ converge uniformément au voisinage de $+\infty$

On en déduit que la série $\sum_{k>1} \frac{\mu(k)}{k^2}$ converge et

$$\lim_{n \to +\infty} P(W_n = 1) = \lim_{n \to +\infty} \frac{1}{n^2} \sum_{k=1}^{+\infty} \mu(k) \left(\left\lfloor \frac{n}{k} \right\rfloor \right)^2 = \lim_{n \to +\infty} \sum_{k=1}^{+\infty} f_k(n) = \sum_{k=1}^{+\infty} \frac{\mu(k)}{k^2}$$

9. Pour tout $n \in \mathbb{N}^*$, $P(W_n = k) \in [0, 1]$, donc $\ell_k = \lim_{n \to +\infty} P(W_n = k) \in [0, 1]$.

Pour tout entier $k \geqslant 1$, on pose cette fois $g_k : n \mapsto P(W_n = k)$.

— La série de fonctions $\sum_{k \ge 1} g_k$ converge simplement vers $S: n \mapsto 1$ car pour tout entier n,

$$\sum_{k=1}^{+\infty} P(W_n = k) = 1.$$

- Pour tout entier $k \ge 1$, $\lim_{n \to +\infty} g_k(n) = \ell_k$.
- Il y a convergence uniforme de la série de fonctions sur \mathbb{N}^* vers S puisqu'il y a convergence normale car:

$$\forall k \in \mathbb{N}^* \forall n \in \mathbb{N}^*, |g_k(n)| \leqslant P(W_n \in k\mathbb{N}^*) \leqslant \frac{1}{k^2}$$

donc
$$\forall k \in \mathbb{N}^* \ ||g_k||_{\infty} \leqslant \frac{1}{k^2}$$

Le théorème de double limite affirme alors que

$$1 = \lim_{n \to +\infty} \sum_{k=1}^{+\infty} f_k(n) = \sum_{k=1}^{+\infty} \lim_{n \to +\infty} f_k(n) = \sum_{k=1}^{+\infty} \ell_k$$

On a donc $(\ell_k)_{k\in\mathbb{N}^*}$ définit une loi de probabilité sur \mathbb{N}^* .

10. Soit $k \in \mathbb{N}^*$, en encadrant comme à la question 8.c) on obtient

$$\lim_{n \to +\infty} P(W_n \in k\mathbb{N}^*) = \lim_{n \to +\infty} \left(\frac{\lfloor n/k \rfloor}{n}\right)^2 = \frac{1}{k^2}.$$

On en déduit que pour tout $k \in \mathbb{N}^*$,

$$P(W \in k\mathbb{N}^*) = \lim_{n \to +\infty} P(W_n \in k\mathbb{N}^*)$$
 (propriété admise avec $B = k\mathbb{N}^* \subset \mathbb{N}^*$)
$$= \frac{1}{k^2}$$

$$= P(X \in k\mathbb{N}^*)$$
 où X suit une loi zêta de paramètre 2 (d'après la question 2)

D'après la seconde propriété admise, la variable W suit une loi zêta de paramètre 2.

On a alors
$$\ell_1 = P(W = 1) = P(X = 1) = \frac{1}{\zeta(2)1^2} = \frac{1}{\zeta(2)}$$
.

Or,

$$P(W = k) = \lim_{n \to +\infty} P(W_n = 1) = \lim_{n \to +\infty} P(U_n \land V_n = 1)$$

Donc, quand n tend vers $+\infty$, la probabilité, quand on prend indépendamment deux nombres au hasard dans [1, n] (loi uniforme) que ces deux nombres soient premiers entre eux, tend vers $\frac{1}{\zeta(2)} = \frac{1}{\pi^2/6} = \frac{6}{\pi^2}.$