On se fixe un réel strictement positif ε pour les questions 1 et 2.

- 1. (a) La suite (f_n) convergeant uniformément vers f, on sait que $(f_n f)$ converge uniformément vers la fonction nulle. On en déduit qu'il existe N tel que pour tout $n \ge N$, $f_n f$ soit bornée. De plus, la suite $(||f_n f||_{\infty})_{n \ge N}$ tend vers 0 donc, pour ε , il existe $N_1 \ge N$ tel que pour $n \ge N_1$, $||f_n f||_{\infty} \le \varepsilon$.
 - (b) Soit n et p deux entiers supérieurs à N_1 :

$$||f_n - f_p||_{\infty} = ||(f_n - f) + (f - f_p)||_{\infty} \le ||f_n - f||_{\infty} + ||f - f_p||_{\infty} \le 2\varepsilon.$$

De ce fait, pour tout $x \in A$, $|f_n(x) - f_p(x)| \le ||f_n - f_p||_{\infty} \le 2\varepsilon$. En faisant alors tendre x vers a (et en utilisant que $X \mapsto |X|$ est continue), on obtient $||\ell_n - \ell_p|| \le 2\varepsilon$.

(c) On en déduit en appliquant ce qui précède à $n=N_1$ que pour tout $p\geqslant N_1$, $|\ell_p-\ell_{N_1}|\leqslant 2\varepsilon$. Cela implique que $(\ell_n)_{n\geqslant N_1}$ est bornée puisqu'elle est à valeurs dans $[\ell_{N_1}-2\varepsilon,\ell_{N_1}+2\varepsilon]$. De ce fait, la suite $(\ell_n)_{n\in\mathbb{N}}$ est bornée.

On peut donc appliquer le théorème de Bolzano-Weierstrass pour en déduire que l'on peut en extraire une sous-suite convergente de (ℓ_n) .

On note $(\ell_{\varphi(n)})$ une suite extraite de (ℓ_n) convergente et on note α sa limite

2. (a) Par définition, $(\ell_{\varphi(k)})_{k\geqslant 0}$ tend vers α . Donc, il existe M tel que $k\geqslant M$ implique que $|\ell_{\varphi(k)}-\alpha|\leqslant \varepsilon$. Posons N_2 un entier supérieur à N_1 et à $\varphi(M)$.

Soit $n \ge N_2$ tel que $n \in \varphi(N)$. Comme φ est strictement croissante, $n = \varphi(k)$ avec $k \ge M$ et donc

$$|\ell_n - \alpha| = |\ell_{\sigma(k)} - \alpha| \le \varepsilon.$$

(b) Soit $n \ge N_2$, il existe $p \in \varphi(N)$ tel que $p \ge N_2$ car $\varphi(N)$ n'est pas majorée. On en déduit que

$$|\ell_n - \alpha| = |(\ell_n - \ell_p) + (\ell_p - \alpha)| \le |\ell_n - \ell_p| + |\ell_p - \alpha| \le 2\varepsilon + \varepsilon = 3\varepsilon.$$

- (c) L'assertion prouvé ci dessus, signifie que $\boxed{(\ell_n)$ converge vers α
- 3. On veut maintenant montrer que $\lim_{x\to a} f(x) = \alpha = \lim(\ell_n)$.

C'est-à-dire:

$$\forall \varepsilon>0, \exists \eta>0, \forall x\in A, |x-a|\leqslant \eta \Rightarrow |f(x)-\alpha|\leqslant \varepsilon.$$

Soit donc $\varepsilon > 0$ (ici $\varepsilon > 0$ est générique). D'après la question 1.a) il existe un entier A_1 tel que pour $n \ge A_1$, $||f_n - f||_{\infty} \le \frac{\varepsilon}{3}$. De même, comme (ℓ_n) converge vers α , il existe un entier A_2 tel que pour $n \ge A_2$, $|\ell_n - \alpha| \le \frac{\varepsilon}{3}$. Fixons un entier n_0 supérieur à A_1 et à A_2 .

Comme $\lim_{x\to a} f_{n_0} = \ell_{n_0}$, il existe $\eta > 0$ tel que pour $x \in A$, $|x-a| \le \eta \Rightarrow |f_{n_0}(x) - \ell_{n_0}| \le \frac{\varepsilon}{3}$.

Finalement, pour $x \in A$ tel que $|x - a| \le \eta$,

$$|f(x) - \alpha| = |(f(x) - f_{n_0}(x)) + (f_{n_0}(x) - \ell_{n_0}) + (\ell_{n_0} - \alpha)| \leq ||f - f_{n_0}||_{\infty} + |f_{n_0}(x) - \ell_{n_0}| + |\ell_{n_0} - \alpha| \leq \varepsilon.$$

On a bien montré que $\lim_{x\to a} f(x) = \lim(\ell_n)$.

^{1.} On vient de montrer que la suite (ℓ_n) converge en n'utilisant que la propriété démontrée en 1.b) qui est que pour tout réel $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour n, p des entiers supérieurs ou égaux à N, $|\ell_n - \ell_p| \le \varepsilon$. Une telle suite s'appelle une suite de Cauchy. On a donc montré que dans \mathbb{R} toute suite de Cauchy converge; on dit que \mathbb{R} est *complet*.