Théorème (Sommation par paquets - cas réels positifs)

Soit $(u_i)_{i\in I}$ une famille de réels positifs indexée par I. Soit $(I_j)_{j\in J}$ une partition de I. Dans $[0, +\infty]$,

$$\sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) = \sum_{i \in I} u_i$$

En particulier, $(u_i)_{i \in I}$ est sommable si et seulement toutes les familles $(u_i)_{i \in I_j}$ sont sommables et que la famille $\left(\sum_{i \in I_j} u_i\right)_{i \in I}$ est sommable.

Démonstration : Ce théorème est admis. On va démontrer cette égalité par double inégalité. Avant de commencer la preuve, on va avoir besoin d'un lemme.

Lemme

Soit $(u_i)_{i\in I}$ une famille de réels positifs. Soit $J\subset I$. Dans $[0,+\infty]$,

$$\sum_{i\in J}u_i\leqslant\sum_{i\in I}u_i$$

Démonstration du lemme : Soit J' une partie finie de J. C'est aussi une partie finie de I donc

$$\sum_{i\in J'}u_i\leqslant\sum_{i\in I}u_i$$

Cela montre que

$$\sum_{i \in J} u_i \leq \sum_{i \in I} u_i$$

- $\boxed{\geqslant}$ Soit $K \subset I$ un ensemble fini. Pour tout $j \in J$, on note $K_j = K \cap I_j$ et on considère T l'ensemble des indices j tels que $K_j \neq \emptyset$. L'ensemble T est une partie finie de J car K est un ensemble fini. On a alors

$$\sum_{i \in K} u_i = \sum_{j \in T} \left(\sum_{i \in K_j} u_i \right) \leqslant \sum_{j \in T} \left(\sum_{i \in I_j} u_i \right) \leqslant \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

où la première inégalité est obtenue en montrant que pout tout $j \in J$, $\sum_{i \in K_j} u_i \leq \sum_{i \in I_j} u_i$ d'après le lemme ci-dessus et la croissance de la somme.

Cela montre que

$$\sum_{i \in I} u_i \leqslant \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

1/4

- \leq Soit J' une partie finie de J, on veut majorer $\sum_{j \in J'} \left(\sum_{i \in I_j} u_i \right)$. On fixe $\varepsilon > 0$ et on note N = #J'. Par définition de la borne supérieure, pour tout $j \in J'$, il existe une partie finie X_j de I_j telle que

$$\sum_{i \in I_j} u_i - \frac{\varepsilon}{N} \leqslant \sum_{i \in X_j} u_i \leqslant \sum_{i \in I_j} u_i$$

En faisant la somme sur tous les éléments de J' et en notant $X = \bigcup_{j \in J'} X_j$,

$$\sum_{j \in J'} \left(\sum_{i \in I_j} u_i \right) - \varepsilon \leqslant \sum_{j \in J'} \left(\sum_{i \in X_j} u_i \right) = \sum_{i \in X} u_i \leqslant \sum_{i \in I} u_i$$

L'inégalité de droite venant du fait que X est un ensemble fini. Cette inégalité étant vraie pour tout $\varepsilon > 0$, on a donc

$$\sum_{j \in J'} \left(\sum_{i \in I_j} u_i \right) \leqslant \sum_{i \in I} u_i$$

Cela implique que

$$\sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) \leqslant \sum_{i \in I} u_i$$

Théorème (Sommation par paquets - cas complexe)

Soit $(u_i)_{i\in I}$ une famille de nombres complexes indexée sur un ensemble I. Soit $(I_j)_{j\in J}$ une partition de I. La famille $(u_i)_{i\in I}$ est sommable si et seulement si

- − Pour tout $j \in J$, la famille $(u_i)_{i \in I_i}$ est sommable.
- La famille $\left(\sum_{i \in I_j} |u_i|\right)_{i \in I}$ est sommable.

Dans ce cas,

$$\sum_{i \in I} u_i = \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

Démonstration : Ce théorème est admis.

— Commençons par la partie sur la sommabilité. D'après le théorème de sommation par paquets pour les réels positifs, dans $[0, +\infty]$,

$$\sum_{j \in J} \left(\sum_{i \in I_j} |u_i| \right) = \sum_{i \in I} |u_i|$$

Comme la famille $(u_i)_{i\in I}$ est sommable si et seulement si la famille $(|u_i|)_{i\in I}$ est sommable, on obtient le résultat voulu.

− On suppose maintenant que la famille $(|u_i|)_{i \in I}$ est sommable. On va montrer le résultat sur la somme en utilisant le théorème d'approximation, que pour tout $\varepsilon > 0$,

$$\left| \sum_{i \in I} u_i - \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) \right| \leqslant 2\varepsilon$$

On fixe $\varepsilon > 0$. On sait qu'il existe $F \subset I$ un ensemble fini tel que pour tout F' contenant F,

$$\left| \sum_{i \in I} u_i - \sum_{i \in F'} u_i \right| \leqslant \varepsilon$$

De plus, par inégalité triangulaire, pour tout $j \in J$, $\left|\sum_{i \in I_j} u_i\right| \leq \sum_{i \in I_j} |u_i|$ ce qui montre que la famille $\left(\sum_{i \in I_j} u_i\right)_{j \in J}$ est sommable. Il existe donc $G \subset J$ un ensemble fini tel que pour tout G' contenant G, $\left|\sum_{i \in I} \left(\sum_{i \in I_i} u_i\right) - \sum_{i \in G} \left(\sum_{i \in I_i} u_i\right)\right| \leq \varepsilon$

Quitte à ajouter à G tous les éléments $j \in J$ tels que $F \cap I_j \neq \emptyset$, on peut supposer que $F \subset \bigcup_{j \in G} I_j$ (mais G reste un ensemble fini). On pose alors $T = \bigcup_{j \in G} I_j$ et on a

$$\sum_{j \in G} \left(\sum_{i \in I_j} u_i \right) = \sum_{i \in T} u_i$$

Donc

$$\left| \sum_{i \in I} u_i - \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) \right| \leq \left| \sum_{i \in I} u_i - \sum_{i \in T} u_i + \sum_{i \in T} u_i - \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) \right|$$

$$\leq \left| \sum_{i \in I} u_i - \sum_{i \in T} u_i \right| + \left| \sum_{j \in G} \left(\sum_{i \in I_j} u_i \right) - \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right) \right|$$

$$\leq 2\varepsilon$$