On considère une suite $(Y_n)_{n\in\mathbb{N}^*}$ de variables aléatoires réelles discrètes, toutes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , **indépendantes, centrées** (c'est-à-dire d'espérance nulle) et possédant un moment d'ordre 2.

On admet qu'une suite réelle $(u_n)_{n\in\mathbb{N}^*}$ converge si, et seulement si, on a

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N}^* \quad \forall (n, p) \in \mathbb{N}^2 \quad (p \geqslant N \text{ et } n \geqslant N \Rightarrow |u_p - u_n| \leqslant \varepsilon)$$

On pose, pour tout entier naturel n non nul, $S_n = \sum_{k=1}^n Y_k$ et on note \mathscr{C} l'ensemble des $\omega \in \Omega$ pour lesquels la suite $(S_n(\omega))_{n \in \mathbb{N}^*}$ converge.

Partie I - La convergence presque sûre

1. On pose, pour tout
$$\varepsilon > 0$$
, $B(\varepsilon) = \bigcup_{N=1}^{+\infty} \left(\bigcap_{\substack{n \ge N \\ p \ge N}} [|S_n - S_p| \le \varepsilon] \right)$.

- a) Justifier, pour tout $\varepsilon > 0$, l'appartenance de $B(\varepsilon)$ à \mathscr{A} .
- b) Établir l'égalité : $\mathscr{C} = \bigcap_{\varepsilon > 0} B(\varepsilon)$.
- c) Comparer les ensembles $B(\varepsilon)$ et $B(\varepsilon')$ quand $0 < \varepsilon < \varepsilon'$.
- d) Établir l'égalité : $\mathscr{C} = \bigcap_{k=1}^{+\infty} B\left(\frac{1}{k}\right)$ et en déduire que $\mathscr{C} \in \mathscr{A}$.
- 2. a) Montrer que $P(\mathscr{C}) = 1$ si, et seulement si, pour tout entier naturel k non nul,

$$P\left(B\left(\frac{1}{k}\right)\right) = 1.$$

b) En déduire que $P(\mathscr{C}) = 1$ si, et seulement si, pour tout $\varepsilon > 0$,

$$P\left(\bigcap_{N=1}^{+\infty} \bigcup_{\substack{n\geqslant N\\p\geqslant N}} [|S_n - S_p| > \varepsilon]\right) = 0.$$

c) Montrer que $P(\mathscr{C}) = 1$ si, et seulement si, pour tout $\varepsilon > 0$,

$$\lim_{N \to +\infty} P \left(\bigcup_{\substack{n \ge N \\ p \ge N}} \left[|S_n - S_p| > \varepsilon \right] \right) = 0$$

Partie II - Une inégalité

Quand une variable aléatoire U, définie sur (Ω, \mathcal{A}, P) , a une espérance on note E(U) sa valeur. Soit $\varepsilon > 0$ et N un entier naturel non nul. On note T_N l'application qui, à chaque $\omega \in \Omega$, associe l'élément de $\mathbb{N} \cup \{+\infty\}$ défini par

$$T_N(\omega) = \inf\{p \in \mathbb{N}^*; p > N \text{ et } |S_p(\omega) - S_N(\omega)| > \varepsilon\}$$

(avec la convention inf $\emptyset = +\infty$).

- 3. a) Soit A un événement. Établir l'égalité : $E(\mathbb{1}_A) = P(A)$.
 - b) Déterminer, pour tout entier naturel N non nul et pour tout entier p > N, les valeurs des espérances $E(S_p S_N)$ et $E((S_p S_N)^2)$ en fonction des moments des Y_k .
- 4. Exprimer, pour tout entier k > N, l'ensemble $[T_N = k]$ à l'aide d'événements liés à différentes variables aléatoires S_i et en déduire que l'application T_N est une variable aléatoire.
- 5. a) Prouver, pour tout entier k > N, l'inégalité : $\varepsilon^2 P([T_N = k]) \leq E((S_k S_N)^2 \mathbb{1}_{[T_N = k]})$.
 - b) Soit p un entier strictement plus grand que N. Justifier, pour tout $k \in [N+1, p]$, l'indépendance des variables $S_p S_k$ et $(S_k S_N) \mathbb{1}_{[T_N = k]}$.
 - c) En déduire, pour tout $(p, k) \in \mathbb{N}^2$ vérifiant $N < k \leq p$, l'inégalité :

$$\varepsilon^2 P\left([T_N = k] \right) \leqslant E\left((S_p - S_N)^2 \mathbb{1}_{[T_N = k]} \right).$$

d) Prouver, pour tout entier p > N, l'inégalité :

$$\varepsilon^2 \sum_{k=N+1}^p P\left([T_N = k] \right) \leqslant \sum_{i=N+1}^p E\left(Y_i^2 \right).$$

6. On suppose, de plus, que la série $\sum_{m\geqslant 1}E\left(Y_{m}^{2}\right)$ converge. Établir l'inégalité :

$$P\left(\bigcup_{p>N} \left[|S_p - S_N| > \varepsilon\right]\right) \leqslant \frac{1}{\varepsilon^2} \sum_{i=N+1}^{+\infty} E\left(Y_i^2\right).$$

Partie III - Le résultat

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires réelles discrètes, toutes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , **indépendantes** et toutes de même loi que X_1 . On suppose que la loi de la variable X_1 est donnée par

$$P([X_1 = -1]) = P([X_1 = 1]) = \frac{1}{2}$$

On pose, pour tout entier naturel n non nul, $S_n = \sum_{k=1}^n \frac{X_k}{k}$.

7. Prouver, pour tout entier naturel N non nul, l'inclusion

$$\bigcup_{\substack{n\geqslant N\\p\geqslant N}}[|S_p-S_n|>\varepsilon]\subset\bigcup_{p>N}\left[|S_p-S_N|>\frac{\varepsilon}{2}\right].$$

8. Montrer que, presque sûrement, la série $\sum \frac{X_n}{n}$ converge, c'est-à-dire montrer que l'ensemble des $\omega \in \Omega$ pour lesquels la série $\sum \frac{X_n(\omega)}{n}$ converge est de probabilité 1.