Le sujet est composé de deux problèmes indépendants

Problème 1 (CCINP PSI 2018)

Notations et définitions

- \mathbb{N} désigne l'ensemble des entiers naturels et \mathbb{R} celui des nombres réels.
- Si X est une variable aléatoire d'espérance finie, on note E(X) cette espérance.

Soit (Ω, \mathscr{A}, P) un espace probabilisé. Soit X une variable aléatoire discrète sur (Ω, \mathscr{A}, P) à valeurs dans [-1, 1]. On considère dans ce problème une suite $(X_i)_{i \in \mathbb{N}^*}$ de variables aléatoires discrètes sur (Ω, \mathscr{A}, P) , indépendantes et de même loi que X. Pour tout $n \in \mathbb{N}^*$, on note

$$S_n = \frac{X_1 + \dots + X_n}{n}.$$

Objectif

Montrer que si la variable aléatoire X est centrée, (E(X) = 0), alors la suite $(S_n)_{n \ge 1}$ converge presque sûrement vers la constante 0. Il s'agit d'un cas particulier de la loi forte des grands nombres.

1. On ne suppose pas X centrée dans cette question. Montrer que X est d'espérance finie.

On suppose désormais que X est centrée.

- 2. Énoncer et démontrer l'inégalité de Markov.
- 3. En déduire que, pour tout $\alpha > 0$:

$$P(|X| \geqslant \alpha) \leqslant \frac{E(|X|)}{\alpha}.$$

4. Montrer que, pour tout t>0, pour tout $\varepsilon>0$ et pour tout $n\in\mathbb{N}^*$, on a

$$P(S_n \geqslant \varepsilon) = P(e^{tnS_n} \geqslant e^{tn\varepsilon}) \leqslant \frac{(E(e^{tX}))^n}{e^{tn\varepsilon}}.$$

Majoration de $E(e^{tX})$.

5. Soit a > 1. On considère la fonction g_a définie par

$$\forall x \in \mathbb{R}, \ g_a(x) = \frac{1-x}{2}a^{-1} + \frac{1+x}{2}a - a^x.$$

Montrer que la fonction g_a est dérivable sur \mathbb{R} et que la fonction g'_a est décroissante sur \mathbb{R} . En déduire, en remarquant que $g_a(-1) = g_a(1) = 0$, que, pour tout $x \in [-1, 1], g_a(x) \ge 0$.

6. En déduire que

$$\forall t > 0, \ \forall x \in [-1, 1], \ e^{tx} \leqslant \frac{1 - x}{2} e^{-t} + \frac{1 + x}{2} e^{t}.$$

7. En déduire que

$$\forall t > 0, \ E(e^{tX}) \leqslant \operatorname{ch}(t).$$

8. Montrer que

$$\forall k \in \mathbb{N}, \ \forall t \in \mathbb{R}, \ \frac{t^{2k}}{(2k)!} \leqslant \frac{1}{k!} \left(\frac{t^2}{2}\right)^k.$$

En déduire que

$$\forall t > 0, \ E(e^{tX}) \leqslant e^{t^2/2}.$$

Majoration de $P(|S_n| \ge \varepsilon)$

Dans ce paragraphe, on considère un entier $n \in \mathbb{N}^*$ et un réel $\varepsilon > 0$.

- 9. Montrer que la fonction $\mathbb{R} \ni t \longmapsto e^{-nt\varepsilon + nt^2/2}$ atteint un minimum en un point que l'on précisera.
- 10. En déduire que $P(S_n \geqslant \varepsilon) \leqslant e^{-n\varepsilon^2/2}$, puis que

$$P(|S_n| \geqslant \varepsilon) \leqslant 2e^{-n\varepsilon^2/2}$$
.

Conclusion

- 11. Montrer que, pour tout réel $\varepsilon > 0$, la série de terme général $P(|S_n| > \varepsilon)$ converge.
- 12. On fixe un réel $\varepsilon > 0$. On note, pour tout $n \in \mathbb{N}^*$:

$$B_n(\varepsilon) = \bigcup_{m \geqslant n} \{ \omega \in \Omega ; |S_m(\omega)| > \varepsilon \}.$$

Montrer que, pour tout $n \in \mathbb{N}^*$ et tout $\varepsilon > 0$, $B_n(\varepsilon)$ est un événement et que $P\left(\bigcap_{n \in \mathbb{N}^*} B_n(\varepsilon)\right) = 0$.

13. Pour tout $k \in \mathbb{N}^*$, posons

$$\Omega_k = \left\{ \omega \in \Omega \; ; \; \exists n \in \mathbb{N}^*, \; \forall m \geqslant n, \; |S_m(\omega)| \leqslant \frac{1}{k} \right\}.$$

Montrer que, pour tout $k \in \mathbb{N}^*$, Ω_k est un événement.

Écrire l'ensemble $A = \{\omega \in \Omega \; ; \; \lim_{n \to \infty} S_n(\omega) = 0 \}$ à l'aide des événements $\Omega_k, k \in \mathbb{N}^*$. En déduire que A est un événement.

14. Déduire des questions précédentes que P(A) = 1.

Problème 2 (CCINP MP 2006)

Dans tout le problème, \mathbb{R} est muni de sa norme naturelle : la valeur absolue.

Toutes les fonctions considérées seront à valeurs dans \mathbb{R} .

Si h est une fonction de classe \mathscr{C}^k , $h^{(k)}$ désigne la dérivée k-ième de h.

Si h est une fonction bornée sur \mathbb{R} , on note $||h||_{\infty} = \sup_{x \in \mathbb{R}} |h(x)|$.

Une fonction définie sur \mathbb{R} est dite nulle à l'infini si ses limites en $+\infty$ et en $-\infty$ sont nulles.

Objectifs

Le support d'une fonction f définie sur un intervalle I, noté Supp f, est l'adhérence de l'ensemble des points où elle ne s'annule pas : Supp $f = \{x \in I, f(x) \neq 0\}$.

Une fonction est dite à support compact si son support est une partie compacte de \mathbb{R} .

On appellera fonction test, une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} à support compact.

On note \mathcal{T} l'ensemble des fonctions tests. Il est facile de vérifier que \mathcal{T} est une \mathbb{R} -algèbre.

Le but du sujet est de découvrir des fonctions tests dans la partie I et de les utiliser pour démontrer un théorème de Whitney à la partie II.

Partie I - Découverte des fonctions tests

- 1. Soit A une partie de \mathbb{R} . Montrer que A est bornée si et seulement si son adhérence \bar{A} est une partie compacte de \mathbb{R} . Une fonction f définie sur I est donc à support compact si et seulement si $\{x \in I, f(x) \neq 0\}$ est une partie bornée de \mathbb{R} .
- 2. Quelques exemples
 - a) On note u la fonction paire définie sur \mathbb{R} par $u(x) = 4 x^2$ si $x \in [0, 2]$ et u(x) = 0 si x > 2. Représenter la fonction u et déterminer son support. La fonction u est-elle à support compact? La fonction u est-elle une fonction test?
 - b) La fonction sinus est-elle une fonction test?
- 3. Soit h la fonction définie sur \mathbb{R} par $h(x) = e^{\frac{-1}{x}}$ si x > 0 et h(x) = 0 si $x \leq 0$.
 - a) La fonction h est, d'après les théorèmes généraux, de classe \mathscr{C}^{∞} sur $]0, +\infty[$. Montrer que pour tout entier naturel k, il existe un polynôme P_k dont on précisera le degré tel que pour tout réel x strictement positif, $h^{(k)}(x) = P_k\left(\frac{1}{x}\right) \mathrm{e}^{\frac{-1}{x}}$. En déduire que h est de classe \mathscr{C}^{∞} sur \mathbb{R} .
 - b) La fonction h est-elle une fonction test? La fonction h est-elle développable en série entière au voisinage de 0?
- 4. On définit sur \mathbb{R} la fonction φ par $\varphi(x) = h(-(x+1)(x-1))$.
 - a) Déterminer le support de φ puis justifier que c'est une fonction test. Déterminer les variations de φ puis tracer l'allure de sa courbe.
 - b) Déterminer une fonction test dont le support est [3,8] puis une fonction test dont le support est $[1,2] \cup [5,6]$.
- 5. Déterminer les limites en $+\infty$ et $-\infty$ d'une fonction définie sur \mathbb{R} à support compact.
- 6. Construction d'une suite régularisante.
 - a) Justifier que la fonction φ de la question 4. est intégrable sur \mathbb{R} et que $\int_{-\infty}^{+\infty} \varphi(t) dt > 0$. En déduire l'expression d'une fonction test ρ positive, de support [-1,1], intégrable sur \mathbb{R} et telle que $\int_{-\infty}^{+\infty} \rho(t) dt = 1$.

Pour tout entier naturel non nul n, on définit sur \mathbb{R} la fonction ρ_n par $\rho_n(x) = n\rho(nx)$. La suite de fonctions $(\rho_n)_n$ est appelée suite régularisante.

b) Pour tout entier naturel non nul n, déterminer le support de ρ_n et calculer $\int_{-\infty}^{+\infty} \rho_n(t) dt$.

Partie II - Théorème de Withney

Le but de cette partie est de démontrer le théorème suivant :

Théorème de Whitney : Si F est une partie fermée de \mathbb{R} , alors il existe une fonction f de classe \mathscr{C}^{∞} sur \mathbb{R} telle que F = Z(f) où $Z(f) = \{x \in \mathbb{R}, f(x) = 0\}$.

- 7. Justifier que la réciproque du théorème de Whitney est vraie.
- 8. Une première tentative de preuve... infructueuse

Soit F une partie fermée de \mathbb{R} . Pour tout réel x, on note $d(x, F) = \inf_{y \in F} |x - y|$ et d_F l'application définie sur \mathbb{R} par $d_F(x) = d(x, F)$.

Déterminer $Z(d_F)$. Quelle propriété notée (P) devrait vérifier l'application d_F pour que le théorème de Whitney puisse être démontré?

Représenter graphiquement d_F dans le cas particulier où $F =]-\infty, -1] \cup [1, +\infty[$.

L'application d_F vérifie-t-elle cette propriété (P)? Justifier votre réponse.

9. Utilisation de fonctions tests

Démontrer le théorème de Whitney dans les cas suivants :

- (i) F est le complémentaire d'un intervalle ouvert a, b.
- (ii) F est le complémentaire de la réunion de deux intervalles ouverts disjoints.
- 10. Démontrer le théorème de Whitney dans le cas général. On utilisera librement le résultat suivant : une partie ouverte Ω de \mathbb{R} , peut s'écrire comme une réunion finie ou dénombrable d'intervalles ouverts disjoints, c'est-à-dire $\Omega = \bigcup_{k \in I} a_k, b_k[$, où I est une partie de \mathbb{N} .
- 11. (Pas dans l'énoncé initial) Démontrer le résultat admis à la question précédente.