Dans tout cet exercice, on considère les suites $(H_n)_{n\geqslant 1}$ et $(u_n)_{n\geqslant 1}$ définies pour tout entier naturel n non nul par :

$$H_n = \sum_{k=1}^n \frac{1}{k}$$
 et $u_n = H_n - \ln n$

1) Etablir pour tout entier naturel k non nul, l'encadrement suivant :

$$\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{dt}{t} \leqslant \frac{1}{k}$$

2) a) En utilisant le résultat de la question 1, montrer que pour tout entier naturel n non nul, l'encadrement suivant :

$$\ln(n) + \frac{1}{n} \leqslant H_n \leqslant \ln(n) + 1$$

- b) En déduire un équivalent simple de H_n quand n tend vers $+\infty$.
- 3) a) En utilisant à nouveau l'encadrement obtenu à la question 1, montrer que la suite $(u_n)_{n\geqslant 1}$ est décroissante.
 - b) Montrer que cette suite est convergente; on note γ sa limite. Montrer que γ appartient à [0,1].
- 4) Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 . On pose pour tout naturel k non nul :

$$J_k = \frac{1}{2} \int_{k}^{k+1} \left(t - k - \frac{1}{2} \right)^2 f''(t) dt$$

a) Etablir pour tout entier naturel k non nul, l'égalité suivante :

$$J_k = \frac{f'(k+1) - f'(k)}{8} - \frac{f(k+1) + f(k)}{2} + \int_k^{k+1} f(t)dt$$

b) En déduire pour tout entier naturel n non nul, la relation suivante :

$$\sum_{k=1}^{n-1} J_k = \frac{f'(n) - f'(1)}{8} + \frac{f(1) + f(n)}{2} - \sum_{k=1}^{n} f(k) + \int_1^n f(t)dt$$

- 5) On suppose dans cette question que la fonction f est définie sur \mathbb{R}_+^* par : $f(x) = \frac{1}{x}$.
 - a) Etablir pour tout entier naturel k non nul, la double inégalité suivante : $\frac{1}{12(k+1)^3} \leqslant J_k \leqslant \frac{1}{12k^3}$.
 - b) En déduire que la série de terme général J_k est convergente.
 - c) Soit n un entier supérieur à 1; en utilisant la technique de comparaison à une intégrale, donner un encadrement de $R_{n-1} = \sum_{k=n}^{+\infty} \frac{1}{k^3}$: on commencera par encadrer $\sum_{k=n}^{N} \frac{1}{k^3}$ pour N > n.
 - d) En déduire (pour $n \ge 1$) un encadrement de $\sum_{k=n}^{+\infty} J_k$.
 - e) En déduire finalement que : $\sum_{k=n}^{\infty} J_k \sim \frac{1}{24n^2}$.
 - f) A l'aide de tout ce qui précède, montrer qu'il existe une constante β telle que : $H_n = \ln(n) + \beta + \frac{1}{2n} \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$. Justifier que $\beta = \gamma$.