Exercice I

Dans tout cet exercice, n désigne un entier naturel non nul.

Soit K = R ou C. Soit E un K-espace vectoriel de dimension n.

On considère G un sous-groupe du groupe $(GL(E), \circ)$ tel que pour tout $u \in G$, $u^2 = id_E$.

- 1) Montrer que pour tout $(u, v) \in G^2$, $u \circ v = v \circ u$.
- 2) Soit $u \in G$. Que dire du spectre u? Justifier que u est diagonalisable.
- 3) Soit u et v deux éléments de G.
 - a) Montrer que les espaces propres $E_1(u) = \mathsf{Ker}(u \mathsf{id}_E)$ et $E_{-1}(u) = \mathsf{Ker}(u + \mathsf{id}_E)$ sont stables par v.
 - b) En déduire qu'il existe une base \mathscr{B} telle que $\mathsf{Mat}_{\mathscr{B}}(u)$ et $\mathsf{Mat}_{\mathscr{B}}(v)$ sont diagonales. On pourra considérer les endomorphismes induits par v sur $E_1(u)$ et $E_{-1}(u)$.
- 4) Soit r un entier naturel non nul et u_1, \ldots, u_r des éléments de G. Montrer qu'il existe une base \mathscr{B} telle que pour tout i compris entre 1 et r, $\mathsf{Mat}_{\mathscr{B}}(u_i)$ est diagonale.
- 5) En déduire que G est fini et que $Card(G) \leq 2^n$.
- 6) Montrer que si p et q sont deux entiers non nuls distincts, les groupes $(\mathsf{GL}_p(\mathbf{K}), \times)$ et $(\mathsf{GL}_q(\mathbf{K}), \times)$ ne sont pas isomorphes, c'est-à-dire qu'il n'existe pas d'isomorphisme entre les deux groupes.

Exercice II

Dans tout cet exercice n désigne un entier naturel non nul.

Soit σ une permutation de S_n , on note $P_{\sigma} \in \mathcal{M}_n(\mathbf{R})$ la matrice définie par

$$\forall (i,j) \in [1,n]^2, (P_{\sigma})[i,j] = \begin{cases} 1 & \text{si } \sigma(j) = i \\ 0 & \text{sinon.} \end{cases}$$

On considère $f_{\sigma}: \mathbf{R}^n \to \mathbf{R}^n$ l'endomorphisme canoniquement associé à P_{σ} . On notera (e_1, \dots, e_n) la base canonique de \mathbf{R}^n .

- 1) Soit $j \in [1, n]$, déterminer $f_{\sigma}(e_i)$.
- 2) En déduire que pour σ, σ' dans $S_n, P_{\sigma \circ \sigma'} = P_{\sigma} P_{\sigma'}$ puis que $(P_{\sigma})^{-1} = P_{\sigma^{-1}}$.

Soit σ, σ' deux permutations de S_n . Elles sont dites conjuguées s'il existe une permutation τ telle que $\sigma' = \tau \circ \sigma \circ \tau^{-1}$.

- 3) Montrer que si σ et σ' sont conjuguées alors P_{σ} et $P_{\sigma'}$ sont semblables.
- 4) Réciproquement, soit σ et σ' deux permutations telles que P_{σ} et $P_{\sigma'}$ soient semblables. Pour tout entier k compris entre 2 et n, on note $c_k(\sigma)$ (resp. $c_k(\sigma')$) le nombre de k-cycles dans la décomposition de σ (resp. de σ') en cycles à supports disjoints, et on note $c_1(\sigma)$ (resp. $c_1(\sigma')$) le nombre de points fixes de σ (resp. de σ').
 - a) Montrer que $\chi_{P_{\sigma}} = \prod_{k=1}^{n} (X^k 1)^{c_k(\sigma)}$. On pourra montrer que P_{σ} est semblable à une matrice diagonale par blocs d'une forme intéressante.
 - b) Soit $m \in [1, n]$. Montrer que $\sum_{m|k} c_k(\sigma) = \sum_{m|k} c_k(\sigma')$.

On pourra considérer l'ordre de multiplicité d'un nombre complexe bien choisi.

c) En déduire que

$$\forall m \in [1, n], \quad c_m(\sigma) = c_m(\sigma')$$

- d) Soit $\gamma = (a_1, \dots, a_p)$ et $\tau \in S_n$. Calculer $\tau \circ \gamma \circ \tau^{-1}$.
- e) En déduire que σ et σ' sont conjuguées.