Calculatrices interdites. Les deux problèmes sont indépendants.

Problème I

Soit $\alpha > 0$, on considère f_{α} la fonction définie sur \mathbb{R} par $f_{\alpha} : x \mapsto \alpha x - x^3$. Soit $(u_n)_{n \geqslant 0}$ une suite définie par $u_0 \in \mathbb{R}$ et

$$\forall n \in \mathbb{N} \quad u_{n+1} = f_{\alpha}(u_n)$$

On se propose d'étudier la suite (u_n) et la série $\sum (u_n)$.

- 1) a) Étudier les variations de f_{α} sur \mathbb{R} .
 - b) Étudier le signe de $g_{\alpha}: x \mapsto f_{\alpha}(x) x$ sur \mathbb{R} .
- 2) On suppose dans cette question que $\alpha \in]0,1]$ et que $u_0 \in]0,\sqrt{\alpha}[$.
 - a) Tracer sur un même dessin la courbe représentative de f_{α} et la droite d'équation y=x.
 - b) Montrer que l'intervalle $]0, \sqrt{\alpha}[$ est stable par f_{α} . En déduire que $\forall n \in \mathbb{N}, u_n \in]0, \sqrt{\alpha}[$.
 - c) Montrer que la suite (u_n) est décroissante.
 - d) Montrer que $u_n \longrightarrow 0$.
- 3) On suppose dans cette question que $0 < \alpha < 1$ et $u_0 \in]0, \sqrt{\alpha}[$.
 - a) Montrer que $\forall x \in [0, \sqrt{\alpha}], 0 \leqslant f_{\alpha}(x) \leqslant \alpha x$. En déduire que $\forall n \in \mathbb{N}, u_n \leqslant \alpha^n u_0$.
 - b) Montrer que la série de terme général u_n est convergente.

On note dans la suite de la question 3, $R_n = \sum_{k=n+1}^{+\infty} u_k$.

- c) Montrer que $u_{n+1} \sim \alpha u_n$.
- d) Montrer que $R_n \sim \alpha R_{n-1}$
- e) En déduire que $R_n \sim \frac{\alpha}{1-\alpha} u_n$.
- f) i) Montrer que $\ln u_k \ln u_{k-1} \ln \alpha \sim -\frac{u_{k-1}^2}{\alpha}$. En déduire que $\ln u_k - \ln u_{k-1} - \ln \alpha = O(\alpha^{2k})$.
 - ii) En déduire qu'il existe un réel K tel que $\ln u_n = n \ln \alpha + K + o(1)$.
 - iii) Donner un équivalent de u_n .
 - iv) En déduire un équivalent de R_n sans utiliser la question 3) e).
 - v) Retrouver le résultat de la question 3) e).
- 4) On se place dans le cas où $\alpha = 1$ et $u_0 \in]0,1[$.
 - a) Déterminer un réel β tel que $\frac{1}{u_{n+1}^{\beta}} \frac{1}{u_n^{\beta}}$ ait une limite finie ℓ non nulle.
 - b) En déduire un équivalent simple de u_n et la nature de la série $\sum (u_n)_{n\geqslant 0}$.
 - c) Déterminer un équivalent de $\frac{1}{u_{n+1}^{\beta}} \frac{1}{u_n^{\beta}} \ell$.
 - d) En déduire un développement asymptotique de u_n avec un reste en $o\left(\frac{\ln n}{n^{3/2}}\right)$.

On pourra utiliser que $\sum_{k=1}^{n} \frac{1}{k} \sim \ln n$.

Problème II

Le but de ce problème est de déterminer la nature de la série $\sum_{n>1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ suivant la valeur du réel α .

Partie I - Cas où $\alpha > 1$.

1) Montrer que si $\alpha > 1$ alors la série $\sum_{n > 1} \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$ converge.

Partie II - Cas où α appartient à $]\frac{1}{2},1]$. On suppose dans cette partie que $\frac{1}{2}<\alpha\leqslant 1$. On définit la fonction ϕ sur $[1,\infty[$ par

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \phi(n) = \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ et $v_n = \int_{-\infty}^{n+1} \phi(t)dt$.

2) À l'aide d'un changement de variable, montrer que pour tout x > 1,

$$\int_{1}^{x} \phi(t)dt = 2 \int_{1}^{\sqrt{x}} \frac{\sin(\pi y)}{y^{2\alpha - 1}} dy.$$

- 3) On pose $w_p = \int_{0}^{p+1} \frac{\sin(\pi y)}{u^{2\alpha 1}} dy$.
 - a) À l'aide d'un changement de variable, montrer que $w_p = (-1)^p \int_0^1 \frac{\sin(\pi s)}{(p+s)^{2\alpha-1}} ds$
 - b) En déduire que la série $\sum w_p$ converge.
- 4) a) Soit X un réel supérieur ou égal à 1, on désigne par |X| la partie entière inférieure de X. Montrer que

$$\left| \int_{|X|}^{X} \frac{\sin(\pi y)}{y^{2\alpha - 1}} dy \right| \leqslant \frac{1}{|X|^{2\alpha - 1}}.$$

- b) En déduire que $\int_{-X^{\perp}}^{X} \frac{\sin(\pi y)}{y^{2\alpha-1}} dy \to 0$ quand X tend vers $+\infty$.
- c) En déduire que $\int_1^X \frac{\sin(\pi y)}{y^{2\alpha-1}} dy$ a une limite finie quand X tend vers $+\infty$. On pourra utiliser la question 3.b)
- d) En déduire que la série $\sum_{n\geq 1} v_n$ converge.
- 5) a) Montrer qu'il existe un réel K tel que $\forall t \in [1, +\infty[, |\phi'(t)|] \leqslant \frac{K}{t^{\alpha+\frac{1}{2}}}$
 - b) Montrer que pour tous réel a, b tels que $1 \leqslant a \leqslant b, |\phi(b) \phi(a)| \leqslant \frac{K(b-a)}{a^{\alpha+\frac{1}{2}}}$.
 - c) Montrer que pour tout $n \in \mathbb{N}^*$, $|u_n v_n| \leqslant \frac{K}{n^{\alpha + \frac{1}{2}}}$.
- 6) En déduire la nature de la série $\sum_{n\geq 1} u_n$.

Partie III - Cas où $\alpha = \frac{1}{2}$.

On suppose, dans cette partie, que $\alpha = \frac{1}{2}$.

- 7) On veut établir un développement asymptotique de $\frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$.
 - a) Rappeler le développement en 0 de $u\mapsto \sqrt{1+u}$ à un $O(u^2)$ près et celui de $u\mapsto e^u$ à un $O(u^3)$ près.
 - b) En déduire que

$$e^{i\pi\sqrt{n+1}} - e^{i\pi\sqrt{n}} = \frac{i\pi e^{i\pi\sqrt{n}}}{2\sqrt{n}} - \frac{\pi^2 e^{i\pi\sqrt{n}}}{8n} + O\left(\frac{1}{n^{3/2}}\right)$$

c) Montrer alors que

$$\frac{\sin(\pi\sqrt{n})}{n^{\alpha}} = -\frac{2}{\pi} \left(\cos(\pi\sqrt{n+1}) - \cos(\pi\sqrt{n}) \right) - \frac{\pi}{4n} \cos(\pi\sqrt{n}) + \beta_n$$
 où $\beta_n = O\left(\frac{1}{n^{3/2}}\right)$.

- 8) a) Déterminer la nature de la série $\sum_{n\geq 1} \beta_n$.
 - b) On pose $\gamma_n = \cos(\pi \sqrt{n})$. Montrer que la suite (γ_n) diverge. On pourra considérer deux suites extraites.
 - c) On admet qu'en procédant comme dans la partie II, on puisse prouver que la série $\sum_{n\geqslant 1} \frac{\cos(\pi\sqrt{n})}{n}$ converge. En déduire la nature de $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$

Partie IV - Cas $\alpha < \frac{1}{2}$.

On suppose, dans cette partie, que α est strictement inférieur à $\frac{1}{2}$.

On va montrer par l'absurde que la série $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ diverge. On suppose donc qu'elle converge. On pose $S_0=0$ et pour tout $p\geqslant 1$,

$$S_p = \sum_{n=1}^p \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}.$$

9) Montrer que pour tout entier n non nul,

$$\frac{\sin(\pi\sqrt{n})}{\sqrt{n}} = n^{\alpha - \frac{1}{2}} (S_n - S_{n-1}).$$

10) En déduire que pour $N \geqslant 2$,

$$\sum_{n=1}^{N} \frac{\sin(\pi \sqrt{n})}{\sqrt{n}} = \sum_{n=1}^{N} S_n \left(n^{\alpha - \frac{1}{2}} - (n+1)^{\alpha - \frac{1}{2}} \right) + S_N (N+1)^{\alpha - \frac{1}{2}}.$$

- 11) a) Justifier que la suite (S_n) est bornée.
 - b) En déduire que la série $\sum_{n\geqslant 1} S_n\left(n^{\alpha-\frac{1}{2}}-(n+1)^{\alpha-\frac{1}{2}}\right)$ converge.
 - c) En déduire la nature de $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{\sqrt{n}}$.
- 12) Conclure sur la nature de $\sum_{n\geqslant 1} \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$.