Notations et conventions

- Dans ce problème, n désigne un entier supérieur ou égal à 2.
- On confond vecteur de \mathbb{R}^n et matrice colonne correspondante, ce qui permet des écritures du type Ax où A est une matrice carrée réelle de taille n et x un élément de \mathbb{R}^n .
- Si f est une fonction de classe \mathscr{C}^1 de \mathbb{R}^n dans \mathbb{R}^n et si x est un élément de \mathbb{R}^n , on note

$$f(x) = (f_1(x), f_2(x), ..., f_n(x))$$

ce qui, compte tenu de la convention précédente, s'écrit aussi

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}$$

Si i et j sont deux entiers de [1, n], la j-ème dérivée partielle de f_i en x est notée $\partial_j f_i(x)$ ou $\frac{\partial f_i}{\partial x_j}(x)$

- Le déterminant d'une matrice carrée A est noté det(A).
- Avec les notations précédentes, on appelle matrice jacobienne de f en x et on note J_f la matrice carrée réelle de taille n dont le terme situé sur la i-ème ligne et la j-ème colonne est $\partial_j f_i$,

Partie I - Matrice jacobienne symétrique, antisymétrique

Au début de la partie f désigne une fonction de classe \mathscr{C}^2 de \mathbb{R}^n dans lui même. Si i, j et k sont trois entiers de [1, n], la dérivée partielle seconde de f_k en x par rapport aux variables x_i et x_j est notée $D_{i,j}f_k(x)$ ou $\frac{\partial^2 f_k}{\partial x_i \partial x_j}(x)$, ou encore $f_{i,j,k}(x)$.

- 1) Justifier que, pour tout x dans \mathbb{R}^n et tous i, j et k dans [1, n], on a $f_{i,j,k}(x) = f_{j,i,k}(x)$.
- 2) Dans les questions a),b),c), on suppose que la matrice jacobienne J_f est antisymétrique pour tout x dans \mathbb{R}^n .
 - a) Montrer que pour tout x dans \mathbb{R}^n , et tous i, j et k dans [1, n], $f_{i,j,k}(x) = -f_{i,k,j}(x)$.
 - b) En déduire que, pour tout x dans \mathbb{R}^n et tous i, j et k dans [1, n], on a $f_{i,j,k}(x) = 0$.
 - c) Montrer que J_f est constante.

En déduire qu'il existe une matrice carrée réelle A de taille n et un élément b de \mathbb{R}^n tels que pour tout x dans \mathbb{R}^n , f(x) = Ax + b.

Justifier que A est antisymétrique.

- d) Réciproquement vérifier que si f est de la forme ci-dessus alors elle est de classe C^2 et sa jacobienne est antisymétrique en tout point.
- 3) a) Soit g de classe \mathscr{C}^2 sur \mathbb{R}^n à valeurs dans \mathbb{R} et $f: x \mapsto \nabla g(x)$ Montrer que f est de classe \mathcal{C}^1 et que sa jacobienne est symétrique en tout point de \mathbb{R}^n .
 - b) Réciproquement, soit f est de classe \mathcal{C}^1 telle que sa jacobienne est symétrique en tout point de \mathbb{R}^n

On considère l'application g de \mathbb{R}^n vers \mathbb{R} définie par $g(x) = \sum_{i=1}^n x_i \int_0^1 f_i(tx) dt$

Montrer que pour tout $j \in [1, N]$ et tout $x \in \mathbb{R}^n$, la $j^{\grave{e}me}$ dérivée partielle de g en x est définie et égale à $f_j(x)$.

Conclure.

Partie II - Matrice jacobienne orthogonale

Dans cette partie, f est une fonction de classe \mathscr{C}^2 de \mathbb{R}^n dans lui-même. On considère la proposition

 (\mathscr{P}) Pour tout x de \mathbb{R}^n , la matrice jacobienne $J_f(x)$ de f est orthogonale.

Pour x dans \mathbb{R}^n et i, j, k dans [1, n], on note

$$\alpha_{i,j,k}(x) = \sum_{p=1}^{n} \frac{\partial f_p}{\partial x_i}(x) \cdot \frac{\partial^2 f_p}{\partial x_j \partial x_k}(x)$$

- 4) On suppose (\mathscr{P}) .
 - a) Montrer que pour tous i, j et k de [1, n], $\alpha_{i,j,k} = \alpha_{i,k,j} = -\alpha_{k,j,i}$.
 - b) En déduire que pour tous $i,\,j$ et k de $[\![1,n]\!],\,\alpha_{i,j,k}=0.$
 - c) Montrer qu'il existe une matrice orthogonale A et un élément b de \mathbb{R}^n tels que, pour tout x de \mathbb{R}^n , f(x) = Ax + b

On pourra interpréter les relations $\alpha_{i,j,k}=0$ à l'aide de produits matriciels.

- 5) Examiner la réciproque.
- 6) Si g est une fonction de classe \mathscr{C}^2 de \mathbb{R}^n dans \mathbb{R} , on note $\Delta_g(x) = \sum_{i=1}^n \frac{\partial^2 g}{\partial x_i^2}$ (laplacien de g en x).

Montrer que (\mathcal{P}) est équivalente à la proposition

(Q) Pour toute fonction g de classe \mathscr{C}^2 de \mathbb{R}^n dans \mathbb{R} , $\Delta_{g \circ f} = (\Delta_g) \circ f$.