Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Dans ce problème on se donne E un espace vectoriel de dimension n sur \mathbb{K} et f un endomorphisme de E. On veut étudier les sous-espaces stables de f.

Partie I : Endomorphisme diagonalisable :

Dans cette partie on suppose que f est diagonalisable. On désigne par p le cardinal du spectre de f et on note $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes ainsi que E_1, \ldots, E_p les sous-espaces propres associés.

- 1) Que dire de f si p=1? En déduire les sous-espaces vectoriels de E stables par f. On suppose par la suite que $p\geqslant 2$.
 - 2) Pour tout $k \in [1; p]$ on se donne un sous-espace vectoriel F_k de E_k .
 - a) Justifier que les sous-espaces vectoriels F_1,\ldots,F_p sont en somme directe.
 - b) Montrer que $F = \bigoplus_{i=1}^{p} F_i$ est un sous-espace vectoriel stable par f.
 - 3) On veut montrer réciproquement que si F est un sous-espace vectoriel stable par f alors $F = \bigoplus_{i=1}^p F_i$ où, pour tout $i \in [1; p]$, $F_i = F \cap E_i$.
 - a) Donner un exemple de trois espaces vectoriels A, B et C de E tels que $A \oplus B = E$ et $(A \cap C) \oplus (B \cap C) \neq C$. On pourra se placer dans le cas où $E = \mathbb{K}^n$.
 - b) Justifier que pour tout x de F il existe $(x_1, \ldots, x_p) \in E_1 \times \cdots \times E_p$ tel que $x = \sum_{i=1}^p x_i$.
 - c) Exprimer f(x) en fonction de x_1, \ldots, x_p et en déduire qu'il existe μ_2, \ldots, μ_p tous non nuls tels que $\sum_{i=2}^p \mu_i x_i$ appartienne à F.
 - d) En réitérant le procédé précédent, montrer que pour tout $i \in [1; p], x_i \in F_i$.
 - e) Conclure.
 - 4) En déduire que l'endomorphisme \check{f} induit par f sur F est diagonalisable.

Partie II: Endomorphisme nilpotent:

- 1) On suppose dans cette question que $E = \mathbb{R}_{n-1}[X]$ et que f est l'endomorphisme de dérivation $f: P \mapsto P'$.
 - a) Montrer que pour tout $k \leq n-1$, les sous-espaces vectoriels $\mathbb{R}_k[X]$ sont stables par f.
 - b) Montrer réciproquement que si F est un sous-espace stable par f différent de $\{0\}$, il existe $k \in [0; n-1]$ tel que $F = \mathbb{R}_k[X]$.

On pourra considérer un polynôme de degré maximal dans F.

- 2) Soit f un endomorphisme nilpotent d'ordre n. C'est-à-dire que l'on suppose que $f^n = 0_{\mathscr{L}(E)}$ et $f^{n-1} \neq 0_{\mathscr{L}(E)}$.
 - a) Soit $x \in E$ tel que $f^{n-1}(x) \neq 0$. Montrer que $\mathscr{B} = (x, f(x), \dots, f^{n-1}(x))$ est une base de l'espace vectoriel E.
 - b) Déterminer la matrice de f dans la base \mathcal{B} . En déduire qu'il existe une base \mathcal{E} de E telle que

$$\mathrm{Mat}_{\mathscr{E}}(f) = \left(egin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \ddots & dots \\ dots & \ddots & \ddots & \ddots & 0 \\ dots & & \ddots & 0 & n-1 \\ 0 & \cdots & \cdots & 0 & 0 \end{array}
ight).$$

c) Déterminer les sous-espaces stables par f.