Exercice I

Pour tout entier naturel $n \ge 1$ on pose $a_n = \frac{(-1)^{n+1}}{n(2n+1)}$. On considère la série entière $\sum_{n \ge 1} a_n x^{2n+1}$ et on note f sa somme.

- 1. Déterminer (soigneusement) le rayon de convergence de la série entière. On le notera R.
- 2. Soit $x \in]-R, R[$ déterminer f'(x).
- 3. En déduire la valeur de f(x) pour $x \in]-R, R[$.
- 4. Calculer $\sum_{n=1}^{+\infty} a_n$.

Exercice II

On considère $E=\mathcal{M}_2(\mathbf{R})$ muni du produit scalaire canonique

$$\forall (M, N) \in E^2, (M|N) = \operatorname{tr}(M^{\top}N)$$

On pose
$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a, b) \in \mathbb{R}^2 \right\}.$$

- 1. Déterminer une base puis une base orthonormée de F^{\perp} .
- 2. Calculer la projection orthogonale de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .
- 3. Calculer la distance de J à F

Exercice bonus

Soit $A \in O_n(\mathbf{R})$.

1. Montrer que

$$\sum_{i=1}^{n} \sum_{i=1}^{n} |A[i,j]| \leqslant n\sqrt{n}$$

2. Montrer que

$$\left| \sum_{i=1}^{n} \sum_{j=1}^{n} A[i, j] \right| \leq n$$