D.T.		
A.T.		
	3 T	

Interrogation 2

On considère la matrice $A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$.

On note a l'endomorphisme canoniquement associé à A.

1. Déterminer les deux valeurs propres de A. On les notera $\lambda_1 < \lambda_2$.

- Valeur de λ_2 0 1 2 3 4 5 6 7 8 <math>9
- 2. Soit $u_1 = (1, y_1, z_1)$ et $u_2 = (1, y_2, z_2)$ tels que $E_{\lambda_1}(a) = \text{Vect}(u_1)$ et $E_{\lambda_2}(a) = \text{Vect}(u_2)$.

•	Valeur de y_1	+									
				1 [2	<u></u>	$]4 \square 5$	[7	8	

- Valeur de z_1 0 1 2 3 4 5 6 7 8 9
- Valeur de y_2 \bigcirc \bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8 \bigcirc 9
- Valeur de z_2 $\begin{bmatrix} \bot + \\ \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$
- 3. La matrice A est-elle diagonalisable?

O .		
	 Oui [Non

4. Déterminer le vecteur $u_3 = (x_3, y_3, 1)$ tel que $(a - id)(u_3) = (1, 0, 1)$.

•	Valeur de x_3	+		1 [2	<u></u>	<u></u>	5 [<u></u>	<u> </u>	8	<u></u> 9
---	-----------------	---	--	-----	---	---------	---------	-----	---------	----------	---	-----------

•	• Valeur de y_3	+					
	33		$\lfloor \ $	$3 \boxed{4}$	5	$6 \square 7$	8 9

5. On admet que (u_1, u_2, u_3) est une base de \mathbb{R}^3 . Donner la matrice a dans cette base

bonne mauvaise
 Donne Inauvaise

Bonus : Soit $n \ge 2$. Soit $M \in \mathcal{M}(\mathbf{K})$ une matrice de rang 1. On suppose que $\operatorname{tr}(M) \ne 0$. Justifier que M est diagonalisable.

On pourra utiliser qu'il existe des vecteurs colonnes non nuls $X,Y\in \mathcal{M}_{n,1}(\mathbf{K})$ tels que $M=XY^{\top}$.

Répondre au dos