Exercice I

- 1) La fonction $f_{\alpha}: x \mapsto \frac{x^{\alpha-1}}{1+x}$ est continue sur $]0, +\infty[$.
 - Sur]0,1], on voit que $\frac{x^{\alpha-1}}{1+x} \underset{x\to 0^+}{\sim} \frac{1}{x^{1-\alpha}}$. Or $x\mapsto \frac{1}{x^{1-\alpha}}\in L^1(]0,1]$) car $1-\alpha<1$. On en déduit que $f_{\alpha}\in L^1(]0,1]$).
 - Sur $[1, +\infty[$, on voit que $\frac{x^{\alpha-1}}{1+x} \underset{x\to +\infty}{\sim} \frac{1}{x^{2-\alpha}}$. Or $x\mapsto \frac{1}{x^{2-\alpha}}\in L^1([1, +\infty[) \text{ car } 2-\alpha>1$. On en déduit que $f_{\alpha}\in L^1([1, +\infty[)$.
- 2) En posant le changement de variable $u=\frac{1}{x}\iff x=\frac{1}{u}.$ On a $dx=-\frac{1}{u^2}du.$ On en déduit que

$$J(\alpha) = \int_{1}^{+\infty} \frac{x^{\alpha - 1}}{1 + x} dx = -\int_{1}^{0} \frac{\frac{1}{u^{\alpha - 1}}}{1 + \frac{1}{u}} \frac{du}{u^{2}} = \int_{0}^{1} \frac{u^{-\alpha}}{1 + u} du = I(1 - \alpha)$$

- 3) Appliquons le théorème de convergence dominée en utilisant la suite de fonctions $(S_n)_{n\geqslant 0}$ sur]0,1[.
 - Pour tout $x \in]0,1[$, la série géométrique $\sum_{k\geq 0} (-x)^k$ converge car |-x|<1. On en déduit que la suite de fonctions (S_n) converge simplement vers

$$x \mapsto \sum_{k=0}^{+\infty} (-1)^k x^{k+\alpha-1} = \frac{x^{\alpha-1}}{1+x} = f_{\alpha}(x)$$

— Domination. Pour tout $x \in]0,1[$ et tout $n \in \mathbb{N},$

$$|S_n(x)| \le \sum_{k=0}^n x^{k+\alpha-1} \le \sum_{k=0}^{+\infty} x^{k+\alpha-1} = \frac{x^{\alpha-1}}{1-x} = \varphi(x)$$

où $\varphi \in L^1(]0,1]$) car elle est continue sur]0,1] et que $\varphi(x) \underset{x\to 0}{\sim} x^{\alpha-1} \in L^1(]0,1]$).

D'après le théorème de convergence dominée,

$$\lim_{n \to +\infty} \int_0^1 S_n(x) dx = \int_0^1 f_\alpha(x) dx = I(\alpha)$$

Or, par linéarité,

$$\int_0^1 S_n(x)dx = \sum_{k=0}^n k = 0^n \int_0^1 (-1)^k x^{k+\alpha-1} dx = \sum_{k=0}^n \frac{(-1)k}{k+\alpha}$$

Finalement : $I(\alpha) = \sum_{k=0}^{+\infty} \frac{(-1)k}{k+\alpha}$.

4) On en déduit que :

$$\int_0^{+\infty} f_{\alpha}(x)dx = I(\alpha) + J(\alpha) = I(\alpha) + I(1 - \alpha)$$

En utilisant ce qui précède,

$$\int_0^{+\infty} f_{\alpha}(x)dx = \sum_{k=0}^{+\infty} \frac{(-1)k}{k+\alpha} + \sum_{k=0}^{+\infty} \frac{(-1)k}{k+1-\alpha} = \sum_{k=0}^{+\infty} \frac{(-1)k}{k+\alpha} - \sum_{k=1}^{+\infty} \frac{(-1)k}{k-\alpha} = \frac{1}{\alpha} + 2\alpha \sum_{k=1}^{+\infty} \frac{(-1)^k}{\alpha^2 - k^2}$$

Exercice II

1) Soit $n \in \mathbb{N}^*$.

La fonction $g: x \mapsto \left(1 + \frac{x^2}{n}\right)^{-n}$ est continue sur $[0, +\infty[$ et $g(x) \sim \frac{n^n}{x^{2n}} = O(\frac{1}{x^{2n}})$ quand

Comme $x \mapsto \frac{1}{x^{2n}}$ est intégrable au voisinage de $+\infty$ car 2n > 1, g l'est aussi donc est intégrable sur $[0, +\infty[$.

Donc l'intégrale définissant I_n converge absolument.

2) On définit pour tout $n \in \mathbb{N}^*$

$$f_n: x \mapsto \begin{cases} (1 + \frac{x^2}{n})^{-n} & \text{si } x \in [0, \sqrt{n}] \\ 0 & \text{sinon} \end{cases}$$

Soit $x \geq 0$.

Pour tout $n \geqslant n_0 = \lceil x^2 \rceil$, on a $f_n(x) = e^{-n \ln(1 + \frac{x^2}{n})}$.

De plus $\ln(1+\frac{x^2}{n}) = \frac{x^2}{n} + o_{n\to\infty}(\frac{1}{n})$. Ainsi $f_n(x) = e^{-x^2 + o_{n\to\infty}(1)} \underset{n\to\infty}{\to} e^{-x^2}$ par continuité de l'exponentielle.

Donc la suite (f_n) converge simplement sur $[0, +\infty[$ vers $f: x \mapsto e^{-x^2}$.

Soit $n \in \mathbb{N}^*$.

Soit $x \in [0, \sqrt{n}]$.

$$\ln(1 + \frac{x^2}{n}) \geqslant \frac{\ln(2) - \ln(1)}{2 - 1} \frac{x^2}{n} + \ln(1)$$

car la fonction l
n est concave sur $]0,+\infty[$ car sa dérivée $x\mapsto \frac{1}{x}$ décroît, donc le graphe de sa restriction à [1,2] est au dessus de sa corde.

Ainsi par croissance de l'exponentielle

$$|f_n(x)| \leqslant e^{-\ln(2)x^2}$$

Cette inégalité demeure vraie pour $x>\sqrt{n}$ car $0\leqslant e^{-\ln(2)x^2}$.

Enfin la fonction (définie indépendamment de n) $\varphi: x \mapsto e^{-\ln(2)x^2}$ est continue (donc continue par morceaux) sur $[0, +\infty[$ et intégrable au voisinage de $+\infty$ car $\varphi(x) = o_{x\to\infty}(1/x^2)$ car $te^{-t} \underset{t \to \infty}{\to} 0$ et $x^2 \underset{x \to \infty}{\to} \infty$, et $x \mapsto 1/x^2$ est intégrable au voisinage de $+\infty$.

Donc par convergence dominée, $\int_0^\infty f_n(x)dx \to \int_0^\infty e^{-x^2}dx$.

3) Pour tout $n \ge 2$, on a :

$$0 \leqslant \int_{\sqrt{n}}^{\infty} (1 + \frac{x^2}{n})^{-n} dx \leqslant \int_{\sqrt{n}}^{\infty} \frac{x}{\sqrt{n}} (1 + \frac{x^2}{n})^{-n} dx \text{ par croissance de l'intégration}$$

$$= \left[\frac{n}{2\sqrt{n}(-n+1)} (1 + \frac{x^2}{n})^{-n+1} \right]_{\sqrt{n}}^{\infty}$$

$$= \frac{\sqrt{n}}{2^n(n-1)} \underset{n \to \infty}{\sim} \frac{1}{2^n \sqrt{n}}$$

On pouvait aussi majorer par $\int_{\sqrt{n}}^{\infty} (x^2/n)^{-n} dx = \frac{1}{2n-1} n^n/n^{(2n-1)/2} \sim 1/(2\sqrt{n})$

Donc par convergence par encadrement, $\int_{\sqrt{n}}^{\infty} (1 + \frac{x^2}{n})^{-n} dx \xrightarrow[n \to \infty]{} 0$.

4)
$$I_n = \int_0^\infty f_n + \int_{\sqrt{n}}^\infty (1 + \frac{x^2}{n})^{-n} dx \underset{n \to \infty}{\to} \int_0^\infty e^{-x^2} dx + 0 = \int_0^\infty e^{-x^2} dx$$

Cette dernière intégrale est appelée intégrale de Gauss. Nous verrons plus tard qu'elle vaut $\sqrt{\pi}/2$.