Partie I

1) Soit $A \in \mathcal{M}_{\ell,n}(\mathbb{C})$ et $B \in \mathcal{M}_{p,r}(\mathbb{C})$. Si A est nulle alors

$$A \otimes B = \begin{pmatrix} 0B & \cdots & 0B \\ \vdots & \ddots & \vdots \\ 0B & \cdots & 0B \end{pmatrix} = 0$$

Si B est nulle alors

$$A \otimes B = \begin{pmatrix} a_{1,1}0 & \cdots & a_{1,n}0 \\ \vdots & \ddots & \vdots \\ a_{\ell,1}0 & \cdots & a_{\ell,n}0 \end{pmatrix} = 0$$

Réciproquement, si $A \otimes B = 0$ alors

$$\forall (i,j) \in [1,\ell] \times [1,n] \ a_{i,j}B = 0$$

donc si de plus $B \neq 0$ alors

$$\forall (i,j) \in [1,\ell] \times [1,n] \ a_{i,j} = 0$$

donc A = 0.

2) Soient $A, A' \in \mathcal{M}_{\ell,n}(\mathbb{C})$ et $B, B' \in \mathcal{M}_{p,r}(\mathbb{C})$. Soit $\lambda \in \mathbb{C}$.

$$(\lambda A + A') \otimes B = \begin{pmatrix} (\lambda a_{1,1} + a_{1,1})B & \cdots & (\lambda a_{1,n} + a'_{1,n})B \\ \vdots & \ddots & \vdots \\ (\lambda a_{\ell,1} + a'_{\ell,1})B & \cdots & (\lambda a_{\ell,n} + a'_{\ell,n})B \end{pmatrix}$$

$$= \begin{pmatrix} \lambda a_{1,1}B + a_{1,1}B & \cdots & \lambda a_{1,n}B + a'_{1,n}B \\ \vdots & \ddots & \vdots \\ \lambda a_{\ell,1}B + a'_{\ell,1}B & \cdots & \lambda a_{\ell,n}B + a'_{\ell,n}B \end{pmatrix} = \lambda(A \otimes B) + A' \otimes B$$

On prouve de même que $A \otimes (\lambda B + B') = \lambda(A \otimes B) + A \otimes B'$. Donc \otimes est bilinéaire.

3) On considère t, v > 0. Soit $A \in \mathcal{M}_{\ell,n}(\mathbb{C}), B \in \mathcal{M}_{n,p}(\mathbb{C}), C \in \mathcal{M}_{r,t}(\mathbb{C})$ et $D \in \mathcal{M}_{t,v}(\mathbb{C})$.

$$(A \otimes C)(B \otimes D) = \begin{pmatrix} \sum_{j=1}^{n} a_{1,j} C \, b_{j,1} D & \dots & \sum_{j=1}^{n} a_{1,j} C \, b_{j,p} D \\ \vdots & & & \vdots \\ \sum_{j=1}^{n} a_{\ell,j} C \, b_{j,1} D & \dots & \sum_{j=1}^{n} a_{\ell,j} C \, b_{j,p} D \end{pmatrix}$$

$$= \begin{pmatrix} (\sum_{j=1}^{n} a_{1,j} \, b_{j,1}) C D & \dots & (\sum_{j=1}^{n} a_{1,j} \, b_{j,p}) C D \\ \vdots & & & \vdots \\ (\sum_{j=1}^{n} a_{\ell,j} \, b_{j,1}) C D & \dots & (\sum_{j=1}^{n} a_{\ell,j} \, b_{j,p}) C D \end{pmatrix}$$

$$= (AB) \otimes (CD)$$

4) Soit $A \in GL_n(\mathbb{C}), C \in GL_p(\mathbb{C})$. Alors

$$(A \otimes C)(A^{-1} \otimes C^{-1}) = (AA^{-1}) \otimes (CC^{-1}) = I_n \otimes I_p = \otimes I_{np}$$

donc AC est inversible à droite, et donc inversible « tout court » d'inverse $A^{-1} \otimes C^{-1}$.

$$\begin{pmatrix} 1 & 0 & 1 & -1 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & -1 & -1 \\ 2 & 0 & 2 & 1 & 0 & 1 \\ 0 & -2 & 0 & 0 & -1 & 0 \\ 0 & 2 & 2 & 0 & 1 & 1 \end{pmatrix} = A \otimes C$$

avec
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
 et $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

On voit que $det(A) = 3 \neq 0$ donc A est inversible, d'inverse

$$A^{-1} = \frac{1}{\det(A)}(\text{com}(A))^{\top} = \frac{1}{3} \begin{pmatrix} 1 & 1\\ -2 & 1 \end{pmatrix}$$

On voit que det(C) = -1 donc C est inversible et

$$C^{-1} = \frac{1}{\det(C)}(\operatorname{com}(C))^{\top} = \begin{pmatrix} 1 & -1 & -1\\ 0 & -1 & 0\\ 0 & 1 & 1 \end{pmatrix}$$

Enfin, M est inversible d'inverse

$$M^{-1} = A^{-1} \otimes C^{-1} = \frac{1}{3} \begin{pmatrix} 0 & -1 & -1 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 2 & 2 & 0 & -1 & -1 \\ 0 & 2 & 0 & 0 & -1 & 0 \\ 0 & -2 & -2 & 0 & 1 & 1 \end{pmatrix}$$

6) Soient $A, A' \in \mathcal{M}_{\ell,n}(\mathbb{C})$ et $B, B' \in \mathcal{M}_{p,r}(\mathbb{C})$. Supposons que A' soit équivalente à A et que B' soit équivalente à B. Il existe alors $L \in GL_{\ell}(\mathbb{C}), N \in GL_{n}(\mathbb{C}), P \in GL_{p}(\mathbb{C}), R \in GL_{r}(\mathbb{C})$ telles que

$$A' = LAN$$
 et $B' = PBR$

Alors

$$A'\otimes B'=(LAN)\otimes (PBR)=((LA)\otimes (PB)).(N\otimes R)=(L\otimes P).(A\otimes B).(N\otimes R)$$

et comme $L\otimes P$ et $N\otimes R$ sont inversibles, $A'\otimes B'$ est équivalente à $A\otimes B$.

Dans le cas où A et A' sont semblables ainsi que B et B', on a $\ell=n$ et p=r et $L=N^{-1}$ et $P=R^{-1}$ et

$$A' \otimes B' = (N^{-1} \otimes R^{-1}).(A \otimes B).(N \otimes R) = (N \otimes R)^{-1}.(A \otimes B).(N \otimes R)$$

donc $A' \otimes B'$ est semblable à $A \otimes B$.

Partie II

On fixe $A \in \mathcal{M}_n(\mathbb{C})$, $B \in \mathcal{M}_p(\mathbb{C})$.

7) Supposons A, B diagonalisables, c'est-à-dire semblables à des matrices diagonales $A' = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$ et B'.

Alors par la question précédente, $A \otimes B$ est semblable à $A' \otimes B' = \begin{pmatrix} \lambda_1 B' & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n B' \end{pmatrix}$, qui est

diagonale.

Donc $A \otimes B$ est diagonalisable.

8) Soit
$$M = \begin{pmatrix} -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \\ -1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
. $= A \otimes B$ avec $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$. On a $A = PA'P^{-1}$ avec $A' = \text{Diag}(2,0)$ et $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

et $B = QB'Q^{-1}$ avec B' = Diag(-1, 1) et $Q = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$.

Finalement, $M = RM'R^{-1}$ avec

$$R = P \otimes Q = \begin{pmatrix} -2 & 0 & -2 & 0 \\ 1 & 1 & 1 & 1 \\ -2 & 0 & 2 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix}$$

et

$$M' = A' \otimes B' = \text{Diag}(-2, 2, 0, 0)$$

- 9) Si B est nulle alors $A \otimes B = 0$ est diagonalisable mais A ne l'est pas si $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- 10) On note $\chi_A(X) = \prod_{i=1}^n (X \lambda_i), \, \chi_B(X) = \prod_{j=1}^p (X \mu_j).$

Alors A est semblable à une matrice triangulaire A' dont les coefficients diagonaux sont $\lambda_1, \ldots, \lambda_n$ et B est semblable à une matrice triangulaire B' dont les coefficients diagonaux sont μ_1, \ldots, μ_p . Alors $A \otimes B$ est semblable à $A' \otimes B'$, qui est triangulaire supérieure de coefficients diagonaux

$$\lambda_1\mu_1,\ldots,\lambda_1\mu_p,\ldots,\lambda_n\mu_1,\ldots,\lambda_n\mu_p$$

Ainsi

$$\chi_{A\otimes B} = \chi_{A'\otimes B'} = \prod_{(i,j)\in \llbracket 1,n\rrbracket \times \llbracket 1,p\rrbracket} (X-\lambda_i\mu_j)$$

Si $A \otimes B$ est inversible alors 0 n'est pas valeur propre de $A \otimes B$. Or par le résultat précédent on a

$$Sp(A \otimes B) = \{\lambda_i \mu_j, \ (i,j) \in [1, n[]] \times [1, p]\}$$

donc $0 \notin Sp(A \otimes B)$ et par conséquent 0 n'est valeur propre ni de A ni de B, donc ces deux matrices sont inversibles.

On aurait aussi pu raisonner sur les noyaux et par contraposée : si A n'est pas inversible alors il existe $X \in \mathcal{M}_{n,1}(\mathbb{C})$ non nul tel que AX = 0. Choisissant $Y \in \mathcal{M}_{p,1}(\mathbb{C})$ non nul quelconque on a $X \otimes Y \neq 0$ (par la question 1) et

$$(A \otimes B)(X \otimes Y) = (AX) \otimes (BY) = 0 \otimes (BY) = 0$$

donc $A \otimes B$ n'est pas inversible.

idem mutatis mutandis si B n'est pas inversible.

11) Soit U un vecteur propre de A et λ la valeur propre associée.

Soit $V \in \mathcal{M}_{p,1}(\mathbb{C})$. Par bilinéarité du produit de Kronecker et du produit matriciel,

$$(A \otimes B)(U \otimes V) = (AU) \otimes (BV) = (\lambda U) \otimes (BV) = U \otimes (B(\lambda V)) \in E(U)$$

Donc E(U) est stable par $A \otimes B$.

- 12) L'application $V \mapsto U \otimes V$ est un isomorphisme de $\mathcal{M}_{p,1}(\mathbb{C})$ vers E(U) car elle est surjective par définition de E(U) et son noyau est réduit à $\{0\}$ par la question 1) et car U est non nul.
- 13) Supposons $A \otimes B$ diagonalisable et A admettant une valeur propre non nulle notée λ .

Soit U un vecteur propre de A associé à λ .

Par la propriété admise (mais prouvée dans un DL précédent, ainsi que dans un cours à venir), l'endomorphisme \check{f} de E(U) induit par $f: \mathcal{M}_{np,1}(\mathbb{C}) \ni W \mapsto (A \otimes B)W$ est diagonalisable.

Il existe donc une base (W_1, \ldots, W_p) de E(U) (qui est de dimension p par la question précédente) et des scalaires (complexes) μ_1, \ldots, μ_p tels que

$$\forall j \in [1, p] \quad \check{f}(W_j) = \mu_j W_j$$

Par la question précédente, il existe une base (V_1, \ldots, V_p) de $\mathcal{M}_p(\mathbb{C})$ telle que

$$\forall j \in [1, p] \quad U \otimes V_j = W_j$$

On a alors pour tout $j \in [1, p]$

$$(A \otimes B)(U \otimes V_j) = \mu_j(U \otimes V_j)$$
$$(AU) \otimes (BV_j) = \mu_j(U \otimes V_j)$$
$$\lambda(U \otimes (BV_j) = \mu_j(U \otimes V_j)$$
$$U \otimes (BV_j) = U \otimes (\frac{\mu_j}{\lambda} V_j)$$

et donc par injectivité de $V\mapsto U\otimes V$:

$$BV_j = \frac{\mu_j}{\Lambda} V_j$$

Ainsi (V_1, \ldots, V_p) est une base de $\mathcal{M}_{p,1}(\mathbb{C})$ formée de vecteurs propres de B. Donc B est diagonalisable.

14) Supposons $A \otimes B$ diagonalisable et non nulle. Alors $A \otimes B$ a au moins une valeur propre non nulle notée ν .

Par la question 10), il existe $(\lambda, \mu) \in Sp(A) \times Sp(B)$ tel que $\lambda \mu = \nu$. Alors $\lambda \neq 0$. Ainsi A a une valeur propre non nulle. Par la question précédente, B est diagonalisable.

On prouve comme en 11), 12), 13) que si $A \times B$ est diagonalisable et si B a une valeur propre non nulle alors A est diagonalisable. Or par le raisonnement précédent B a une valeur propre non nulle (si $A \otimes B \neq 0$). Donc A est diagonalisable.

15) Soit $B \in \mathscr{M}_p(\mathbb{C})$ telle que

$$M = \begin{pmatrix} B & B \\ 0 & B \end{pmatrix}$$

est diagonalisable.

Or $M = A \otimes B$ avec $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Mais A n'est pas diagonalisable car 1 est sa seule valeur propre mais A n'est pas semblable à Diag $(1,1) = I_2$ car sinon on aurait $A = I_2$ puisque I_2 n'est semblable qu'à elle-même.

Donc par la question précédente M est nulle. Par la question 1), B est nulle.

Réciproquement, si B est nulle alors M est nulle donc diagonalisable.