Exercice I

Soit $a \in]0,1[$ et b un réel strictement positif. Soit g une fonction définie sur \mathbb{R} , 1-périodique et continue. On considère W la fonction définie sur \mathbb{R} par

$$W: x \mapsto \sum_{n=0}^{+\infty} a^n g(b^n x)$$

- 1) a) Justifier (proprement) que g est bornée.
 - b) Montrer que la fonction W est bien définie sur \mathbb{R} .
 - c) Montrer que W est continue et bornée. On majorera $||W||_{\infty}$ en fonction de $||g||_{\infty}$.
- 2) Soit f une fonction de \mathbb{R} dans \mathbb{R} , on pose T(f) la fonction de \mathbb{R} dans \mathbb{R} définie par

$$T(f): x \mapsto af(bx)$$

- a) Montrer que $T: f \mapsto T(f)$ est un endomorphisme de l'espace vectoriel des fonctions bornées de \mathbb{R} dans \mathbb{R} .
- b) Montrer que 1 n'est pas une valeur propre de T.
- c) Montrer que T(W) = W g. Montrer de plus que W est l'unique fonction bornée vérifiant cette relation.
- 3) Dans la suite du problème on pose $g: x \mapsto \sin(2\pi x)$ et on suppose que b est un entier pair tel que ab > 1. On souhaite démontrer que, moyennant une hypothèse supplémentaire, W n'est dérivable nulle part.

On fixe x_0 un réel.

a) Montrer que si f est une fonction de \mathbb{R} dans \mathbb{R} dérivable en x_0 et que si (α_m) , (β_m) sont deux suites convergeant vers x_0 telle que pour tout entier m, $\alpha_m \leqslant x_0 \leqslant \beta_m$ et $\alpha_m < \beta_m$ alors

$$\lim_{m \to +\infty} \frac{f(\beta_m) - f(\alpha_m)}{\beta_m - \alpha_m} = f'(x_0)$$

b) Justifier que pour tout entier m il existe un entier k_m tel que $b^m x_0 - k_m$ appartienne à l'intervalle $]-\frac{1}{2},\frac{1}{2}].$

Dans la suite du devoir on pose $\alpha_m = \frac{4k_m - 3}{4b^m}$ et $\beta_m = \frac{4k_m + 3}{4b^m}$

c) Rappeler la formule de $\sin p - \sin q$ et montrer que pour tous réels x et y, $|\sin x - \sin y| \le |x - y|$.

En déduire que

$$\left| \sum_{n=0}^{m-1} a^n \frac{g(b^n \beta_m) - g(b^n \alpha_m)}{\beta_m - \alpha_m} \right| \leq (2\pi) \sum_{n=0}^{m-1} (ab)^n$$

- d) Calculer $g(b^m \alpha_m)$, $g(b^m \beta_m)$. Montrer que pour n > m, $g(b^n \alpha_m) = g(b^n \beta_m) = 0$.
- e) Montrer que

$$\frac{W(\beta_m) - W(\alpha_m)}{\beta_m - \alpha_m} \leqslant \left(\frac{2\pi}{ab - 1} - \frac{4}{3}\right) (ab)^m$$

f) En déduire que si $ab > 1 + \frac{3}{2}\pi$ la fonction W n'est pas dérivable en x_0 . Conclure.

Exercice II

On propose d'étudier des séries de fonctions particulières appelées séries de Dirichlet. Une série de fonctions $\sum_{n\geqslant 0} f_n$ est dite de Dirichlet s'il existe des suites de réels $(a_n)_{n\geqslant 0}$ et $(\lambda_n)_{n\geqslant 0}$ telles que :

$$\forall x \in \mathbb{R}_+ \quad f_n(x) = a_n e^{-\lambda_n x}$$

avec

- (C1) $\exists M \in \mathbb{R}_+^*, \forall n \in \mathbb{N} \quad |a_n| \leqslant \frac{M}{2^n}$
- (C2) La suite $(\lambda_n)_{n\geq 0}$ est strictement croissante.

(C3)
$$\lambda_0 = 0$$
, $\lim_{n \to +\infty} \lambda_n = +\infty$, et $\lambda_n = O(n)$.

Pour tout $k \in \mathbb{N}$, on définit alors la quantité $b_k = \sum_{n=1}^{+\infty} \lambda_n^k a_n$.

- 1) Montrer que pour tout $k \in \mathbb{N}$, le réel b_k est bien défini.
- 2) Montrer que toute série de Dirichlet $\sum_{n\geq 0} f_n$ converge uniformément sur \mathbb{R}_+ . On note alors f sa somme. Justifier que f est continue sur \mathbb{R}_+ .
- 3) Exprimer f(0) et $\lim_{x\to+\infty} f(x)$ en fonction de a_0 et b_0 .
- 4) Soit $k \in \mathbb{N}^*$. Montrer que $f \in \mathscr{C}^k(\mathbb{R}_+, \mathbb{R})$ et donner une expression de $x \mapsto f^{(k)}(x)$. Exprimer ensuite $f^{(k)}(0)$ en fonction de b_k .
- 5) Montrer que si f(x) = 0 pour tout $x \in \mathbb{R}_+$ alors $a_n = 0$ pour tout $n \in \mathbb{N}$.