$L'utilisation\ des\ calculatrices\ n'est\ pas\ autoris\'ee\ pour\ cette\ \'epreuve.$

L'exercice et le problème sont indépendants

Exercice

1) a) À l'aide d'un intégration par parties, montrer que

$$\int_{2}^{x} \frac{1}{\ln t} dt = \frac{x}{\ln x} + c_0 + R_0(x)$$

où R_0 est une fonction de la forme $R_0: x \mapsto \int_2^x g_0(t)dt$ et c_0 une constante réelle. On explicitera la fonction g_0 .

- b) Montrer que $R_0(x) = \underset{x \to +\infty}{o} \left(\int_2^x \frac{1}{\ln t} dt \right)$.
- c) En déduire un équivalent simple de $\int_2^x \frac{1}{\ln t} dt$ quand $x \to +\infty$.
- 2) a) Soit $n \in \mathbb{N}$. Pour x > 2, écrire $\int_2^x \frac{1}{\ln t} dt$ sous la forme:

$$\int_{2}^{x} \frac{1}{\ln t} dt = \sum_{k=0}^{n} \frac{k!x}{(\ln x)^{k+1}} + c_n + R_n(x)$$

où R_n est une fonction de la forme $R_n: x \mapsto \int_2^x g_n(t)dt$ et c_n une constante réelle. On explicitera la fonction g_n .

- b) Montrer que pour tout $n \in \mathbb{N}$, $R_{n+1}(x) = \underset{x \to +\infty}{o} (R_n(x))$.
- c) En déduire un équivalent simple de $R_n(x)$ quand $x \to +\infty$ (n est fixé).
- d) En déduire que

$$\forall n \in \mathbb{N}, \quad \int_2^x \frac{1}{\ln t} \, dt = \sum_{k=0}^n \frac{k!x}{(\ln x)^{k+1}} + \underset{x \to +\infty}{o} \left(\frac{x}{(\ln x)^{n+1}} \right)$$

Problème

Dans tout le problème $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$.

Partie I

Dans cette partie E désigne un \mathbb{K} espace vectoriel de dimension finie.

- 1) Soit $p \in \mathcal{L}(E)$ un projecteur et r son rang.
 - a) Montrer qu'il existe une base de E dans laquelle la matrice de p est

$$J_r = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- b) En déduire la valeur de la trace de p.
- 2) a) Soient u et v deux endomorphismes de E. Montrer que $\operatorname{Im}(u+v) \subset \operatorname{Im}(u) + \operatorname{Im}(v)$. En déduire que $\operatorname{rg}(u+v) \leqslant \operatorname{rg}(u) + \operatorname{rg}(v)$.
 - b) Soient π_1, \ldots, π_k des projecteurs de E. Montrer que la trace de l'endomorphisme $\pi_1 + \ldots + \pi_k$ est entière et supérieure ou égal au rang de cet endomorphisme.

Partie II

Dans cette partie E désigne un \mathbb{K} espace vectoriel de dimension finie. On note $n = \dim(E)$. On s'intéresse dans cette partie à établir la réciproque de la propriété démontrée à la question 2.b) On dit qu'une matrice carrée est **idempotente** si et seulement si elle est égale à son carré.

- 3) Soient $L \in \mathcal{M}_{1,n}(\mathbb{K})$, $C \in \mathcal{M}_{n,1}(\mathbb{K})$ tels que $LC = (1) \in \mathcal{M}_1(\mathbb{K})$. Montrer que $CL \in \mathcal{M}_n(\mathbb{K})$ est idempotente et que son rang est 1.
- 4) Dans cette question uniquement, on pose $M = \begin{pmatrix} -3 & 7 \\ 1 & 6 \end{pmatrix}$.
 - a) Donner la trace et le rang de M.
 - b) On pose $X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $X_2 = MX_1 X_1$. Vérifier que X_1 et X_2 sont linéairement indépendants.
 - c) On note P la matrice dont les colonnes sont X_1 et X_2 . Calculer $M' = P^{-1}MP$. On s'assurera que le coefficient de la première ligne et première colonne de M' vaut 1.
 - d) On note $M_1' \in \mathcal{M}_2(\mathbb{K})$ la matrice dont la première colonne est celle de M' et dont la seconde colonne est nulle. On note $M_2' = M' M_1'$. Montrer que M_1' est idempotente et que M_2' peut s'écrire comme somme de deux matrices idempotentes M_3' et M_4' .
 - e) En déduire une écriture de M comme somme de matrices idempotentes dont on ne cherchera pas à expliciter les coefficients mais qu'on exprimera à l'aide de M'_1, M'_3, M'_4 et P.
- 5) Soit v un endomorphisme de E.

On suppose que pour tout vecteur x de E, $v(x) \in \text{Vect}(x)$.

Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E et $D = \operatorname{Mat}_{\mathscr{B}}(v)$.

- a) Montrer que D est diagonale.
- b) En considérant les vecteurs $e_i + e_j$ pour $i \neq j$ et leurs images par v, montrer que les coefficients diagonaux de D sont identiques.
- c) Qu'en conclure pour v?

6) Soit v un endomorphisme de E qui n'est pas une homothétie.

Soit e un vecteur de F tel que $v(e) \not\in \text{Vect}(e)$.

- a) Montrer que (e, v(e) e) est libre.
- b) En déduire qu'il existe une base $\mathscr C$ de E telle que le coefficient de la première ligne et première colonne de la matrice de v dans la base $\mathscr C$ vaut 1.

Ainsi toute matrice qui n'est pas de la forme λI_n ($\lambda \in \mathbb{K}$) est semblable à une matrice dont le coefficient de la première ligne et première colonne vaut 1.

- 7) Soit u un endomorphisme de E de rang r.
 - a) Montrer qu'il existe une base de E dans laquelle la matrice de u est de la forme

$$M = \begin{pmatrix} O & B \\ O & A \end{pmatrix}$$

avec $A \in \mathscr{M}_r(\mathbb{K})$ et $B \in \mathscr{M}_{n-r,r}(\mathbb{K})$.

On suppose de plus que la trace u est entière et supérieure ou égale à r.

On suppose également dans les questions b),c) et d) que r > 0.

b) Si A n'est pas de la forme λI_r avec $\lambda \in \mathbb{K}$, montrer que M est semblable à une matrice de la forme

$$\begin{pmatrix} O & B' \\ O & A' \end{pmatrix}$$

avec $A' \in \mathcal{M}_r(\mathbb{K})$ et $B' \in \mathcal{M}_{n-r,r}(\mathbb{K})$ et le coefficient de la première ligne et première colonne de A' est égal à 1.

c) On suppose que $A = \lambda I_r$ avec $\lambda \in \mathbb{K}$. Montrer que M est somme d'une matrice idempotente de rang 1 et de la matrice

$$M'' = \begin{pmatrix} O & B \\ O & A'' \end{pmatrix} \text{ avec } A'' = \begin{pmatrix} \lambda - 1 & 0 & \cdots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} \in \mathscr{M}_r(\mathbb{K})$$

- d) En déduire que u est somme d'un ou deux projecteurs et d'un endomorphisme w dont la trace est entière, strictement inférieure à celle de u, et supérieure ou égale au rang de w.
- e) En déduire que u est une somme de projecteurs.

Partie III

Dans cette partie on s'intéresse aux décompositions de l'endomorphisme identité comme somme de projecteurs.

- 8) On considère E un espace vectoriel sur \mathbb{K} non nécessairement de dimension finie sauf à la question 8.c). Soient π_1, \ldots, π_p des projecteurs de E tels que $\pi_1 + \ldots + \pi_p = \mathrm{id}_E$. Pour tout $i \in [1, p]$, on note $E_i = \mathrm{Im}(\pi_i)$.
 - a) Montrer que $E = E_1 + \ldots + E_p$.
 - b) Montrer que si $p=2, E=E_1\oplus E_2$.

c) Dans cette question seulement, on suppose que E est de dimension finie. En utilisant la question 1.b) montrer que $E = E_1 \oplus \ldots \oplus E_p$.

Dans la suite du problème, on va construire des projecteurs dont la somme est l'identité et dont les images ne sont pas en somme directe. On aura bien sûr $p \neq 2$ et E ne sera pas de dimension finie.

Soit $E = \{\frac{P}{X^n}, P \in \mathbb{K}[X] \text{ et } n \in \mathbb{N}\}$ (par exemple $\frac{2X+1}{X^5} \in E$ mais $\frac{3X+2}{X-1} \notin E$ puisque 1 est un pôle de cette fraction).

Pour tout $F \in E$ on pose u(F) = XF'.

- 9) a) Montrer que que E est un sous-espace vectoriel de $\mathbb{K}(X)$.
 - b) Montrer que $(X^k)_{k\in\mathbb{Z}}$ est une base de E.
- 10) Montrer que u est un endomorphisme de E et calculer $u(X^k)$ pour tout $k \in \mathbb{Z}$.
- 11) On pose pour tout $n \in \mathbb{N}$, $A_n = \text{Vect}(X^{-n}, X^{n+2})$. Montrer que A_n est stable par u. On note u_n la restriction de u à A_n .
- 12) Déterminer la trace de u_n .
- 13) Expliquer sans calcul pourquoi u_n est somme de deux projecteurs. Notons p_n et q_n deux projecteurs de A_n tels que $u_n = p_n + q_n$.
- 14) Montrer qu'il existe alors un unique endomorphisme p de E tel que

$$p(X) = X$$
 et $\forall n \in \mathbb{N}, \ \forall F \in A_n, \ p(F) = p_n(F)$

et un unique endomorphisme q de E tel que

$$q(X) = 0$$
 et $\forall n \in \mathbb{N}, \ \forall F \in A_n, \ q(F) = q_n(F)$

- 15) Montrer que p et q sont des projecteurs. Que dire de p+q?
- 16) Pour tout $F \in E$, on pose $s(F) = F(\frac{1}{X})$. Vérifier qu'on définit ainsi un endomorphisme de E et que $u \circ s = -s \circ u$.
- 17) On pose $\check{p} = s \circ p \circ s$ et $\check{q} = s \circ q \circ s$. Montrer que \check{p} et \check{q} sont des projecteurs de E. Que dire de $\check{p} + \check{q}$?
- 18) En déduire que id_E est somme de cinq projecteurs dont les images ne sont pas en somme directe.