Suites	de fonctions
1.1	Limites et continuité
1.2	Dérivation et intégration
Séries	de fonctions
2.1	Limite et continuité
2.2	Intégration et dérivation
	1.1 1.2 Séries 2.1

1. Suites de fonctions

1.1 Limites et continuité

Théorème 1.1 (Continuité)

Soit $(f_n) \in (\mathscr{F}(X, \mathbf{K}))^{\mathbb{N}}$ une suite de fonctions définie sur X et $f \in \mathscr{F}(X, \mathbf{K})$. Soit $a \in X$.

On suppose que

- i) pour tout entier n, f_n est continue en a,
- ii) la suite de fonctions (f_n) converge uniformément vers f sur X

Alors, la fonction f est continue en a.

Corollaire 1.2 (Continuité avec convergence uniforme locale)

Soit $(f_n) \in (\mathscr{F}(X, \mathbf{K}))^{\mathbb{N}}$ une suite de fonctions définie sur X et $f \in \mathscr{F}(X, \mathbf{K})$. On suppose que

- i) pour tout entier n, f_n est continue,
- *ii*) pour tout a de X il existe un voisinage V_a tel que la suite de fonctions (f_n) converge uniformément sur V_a vers f.

Alors, la fonction f est continue sur X.

Théorème 1.3 (Double limite pour les suite de fonctions)

Soit $(f_n) \in (\mathscr{F}(X, \mathbf{K}))^{\mathbb{N}}$ une suite de fonctions définie sur X et $f \in \mathscr{F}(X, \mathbf{K})$. Soit a un point adhérent à X.

On suppose que

- i) pour tout n, f_n admet en a une limite finie $\ell_n \in K$.
- ii) La suite de fonctions converge uniformément vers f au voisinage de a

Alors la suite (ℓ_n) converge (vers ℓ) et $\lim_{x \to a} f(x) = \ell$. C'est-à-dire :

$$\lim_{x \to a} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to a} f_n(x) \right).$$

Remarque : Dans le cas ou $A \subset \mathbb{R}$. S'il n'est pas majoré (resp. minoré) on peut prendre $a = +\infty$ (resp. $a = -\infty$).

1.2 Dérivation et intégration

Proposition 1.4 (Intégration)

Soit *I* un intervalle.

Soit $(f_n) \in \mathcal{F}(I, \mathbf{K})$ une suite de fonctions définie sur I et $f \in \mathcal{F}(I, \mathbf{K})$.

On suppose que

- i) Pour tout entier n, f_n est continue
- ii) La suite de fonctions converge uniformément vers f sur tout segment J vers S.

Soit a un élément de I, on pose $F_n: x \mapsto \int_a^x f_n$ la primitive de f_n qui s'annule en a et $F: x \mapsto \int_a^x f$ la primitive de f qui s'annule en a.

Alors la suite (F_n) converge uniformément sur tout segment J de I vers F.

Corollaire 1.5 (Intégration sur un segment)

Soit [a, b] un segment

Soit $(f_n) \in \mathcal{F}([a,b], K)$ une suite de fonctions définie sur [a,b] et $f \in \mathcal{F}([a,b], K)$.

On suppose que

- i) Pour tout entier n, f_n est continue
- ii) La suite de fonctions converge uniformément vers f sur le segment [a, b].

Alors

$$\lim_{n \to +\infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f$$

Théorème 1.6 (Dérivation termes à termes)

Soit (f_n) une suite de fonctions définies sur un intervalle I et à valeurs dans K. On suppose que

- i) Pour tout entier n, la fonction f_n est de classe \mathcal{C}^1 sur I.
- *ii*) La suite de fonctions (f_n) converge (simplement) vers une fonction f.
- iii) La suite des fonctions dérivées (f'_n) converge **uniformément** sur tout segment J de I vers une fonction g.

Alors

- la fonction f est de classe \mathscr{C}^1 et f' = g.
- $-\,$ la suite (f_n) converge uniformément sur tout segment J vers f

Corollaire 1.7 (Caractère \mathscr{C}^k)

Soit (f_n) une suite de fonctions définies sur un intervalle I et à valeurs dans K. Soit k un entier. On suppose que

- i) Pour tout entier n, la fonction f_n est de classe \mathcal{C}^k sur I.
- *ii*) Pour tout $i \in [[0; k-1]]$, la suite de fonctions $(f_n^{(i)})$ converge (simplement) vers une fonction g_i
- iii) La suite des fonctions dérivées k-ième $(f_n^{(k)})$ converge **uniformément** sur tout segment J de I vers une fonction g_k .

On pose $f = g_0$. Alors

- $-\ f$ est de classe \mathscr{C}^k
- pour tout $i \in [[0; k]], f^{(i)} = g_i$

On peut généraliser pour les fonctions de classe \mathscr{C}^{∞} .

Corollaire 1.8 (Caractère \mathscr{C}^{∞})

Soit (f_n) une suite de fonctions définies sur un intervalle I et à valeurs dans K. On suppose que

- i) Pour tout entier n, la fonction f_n est de classe \mathscr{C}^{∞} sur I.
- *ii*) Pour tout $i \in \mathbb{N}$, la suite de fonctions $(f_n^{(i)})$ converge (simplement) vers une fonction g_i
- *iii*) Pour tout $i \in \mathbb{N}$, la suite des fonctions dérivées i-ième $(f_n^{(i)})$ converge **uniformément** sur tout segment J de I vers la fonction g_i .

On pose $f = g_0$. Alors :

- -f est de classe \mathscr{C}^{∞}
- pour tout $i \in \mathbb{N}$, $f^{(i)} = g_i$

2. Séries de fonctions

Nous allons réécrire les résultats démontrés précédemment sur les suites de fonctions dans le cadre des séries de fonctions.

2.1 Limite et continuité

Théorème 2.9 (Continuité)

Soit $\sum f_n$ une série de fonctions définie sur A. Soit $a \in A$. On suppose que

- i) pour tout entier n, f_n est continue en a,
- ii) la série de fonctions $\sum f_n$ converge uniformément

On note $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ la limite de la série. Alors

Corollaire 2.10 (Continuité avec convergence uniforme locale)

Soit $\sum f_n$ une série de fonctions définie sur A.

On suppose que

- i) pour tout entier n, f_n est continue,
- *ii*) pour tout a de A il existe un voisinage V_a tel que la série de fonctions $\sum f_n$ converge uniformément sur V_a .

On note $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ la limite de la série.

Alors

Théorème 2.11 (Double limite pour les séries de fonctions)
Soit $\sum f_n$ une série de fonctions définie sur A et a un point adhérent à A . On suppose que
i) La série de fonctions converge uniformément vers S au voisinage de a
ii) pour tout n, f_n admet en a une limite finie $\ell_n \in \mathbf{K}$.
Alors
_
_
C'est-à-dire

Remarque : Dans le cas ou $A \subset \mathbb{R}$. S'il n'est pas majoré (resp. minoré) on peut prendre $a = +\infty$ (resp. $a = -\infty$).

2.2 Intégration et dérivation

Proposition 2.12

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I et à valeurs dans K. On suppose que

- *i*) Pour tout entier n, f_n est continue
- *ii*) La série de fonctions converge uniformément sur tout segment J vers S. La limite de la série de fonctions est la fonction $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$.

Pour tout a de I on pose $F_n: x \mapsto \int_a^x f_n$ la primitive de f_n qui s'annule en a.

Alors la série de fonctions $\sum F_n$ converge uniformément sur tout segment J de I vers la fonction $x \mapsto \int_{-\infty}^{x} S$. C'est-à-dire,

$$\forall x \in I, \sum_{n=0}^{+\infty} \int_{a}^{x} f_{n} = \int_{a}^{x} \sum_{n=0}^{+\infty} f_{n}$$

Théorème 2.13 (Intégration sur un segment)

Soit [a, b] un segment

Soit $\sum f_n$ une série de fonctions définie sur [a, b].

On suppose que

- i) Pour tout entier n, f_n est continue
- ii) La série de fonctions converge uniformément sur le segment [a,b]. La limite de la série de fonctions est la fonction $S: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$.

— Théorème 2.14 (Dérivati	on termes à termes)	
	ns définies sur un intervalle I et à valeurs dans K .	
<i>i)</i> Pour tout entier n , f_n e	st de classe \mathscr{C}^1 sur I	
	nverge (simplement) vers S sur I ,	
m la serie de fonctions de fonction T	s dérivées $\sum f_n'$ converge uniformément sur tout segment J vers un	e
Alors:		
_		
_		
_		
Corollaire 2.15 (Caractèr	e $\mathscr{C}^k)$	
	e \mathscr{C}^k) ns définies sur un intervalle I et à valeurs dans \mathbf{K} et $k \in \mathbf{N}$. On	
Soit $\sum f_n$ une série de fonction	ns définies sur un intervalle I et à valeurs dans \mathbf{K} et $k \in \mathbf{N}$. On	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de	ns définies sur un intervalle I et à valeurs dans \mathbf{K} et $k \in \mathbf{N}$. On st de classe \mathscr{C}^k sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	
Soit $\sum f_n$ une série de fonction suppose que i) Pour tout entier n , f_n e ii) pour $i < k$ les séries de iii) la série de fonctions de J vers S_k	ns définies sur un intervalle I et à valeurs dans K et $k \in \mathbb{N}$. On st de classe \mathscr{C}^k sur I , fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I ,	

Corollaire 2.16 (Caractère \mathscr{C}^{∞})

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I et à valeurs dans ${\bf K}.$ On suppose que

- i) Pour tout entier n, f_n est de classe \mathcal{C}^{∞} sur I,
- ii) pour tout entier i, les séries de fonctions $\sum f_n^{(i)}$ convergent (simplement) vers S_i sur I,
- iii) pour tout entier i, les séries de fonctions des dérivées i-ième $\sum f_n^{(i)}$ convergent uniformément sur tout segment J

Alors:

_