Nom:	rrogation 3						
1. Déterminer la nature des intégrales suivantes.							
a) $\int_0^1 \ln(t) dt$	Diverge						
b) $\int_0^{+\infty} \frac{1}{\sqrt{t(1+t)}} dt$	Diverge						
c) $\int_0^{\frac{\pi}{2}} \tan(t) dt$	Diverge						
d) $\int_0^{+\infty} (t^2 + 1)t^{-2} dt$	Diverge						
e) $\int_{1}^{+\infty} \frac{dt}{\sqrt{t^4 + t^3} - t^2} dt$	Diverge						
f) $\int_0^1 \frac{1}{\sqrt{t} \ln(t)} dt$	Diverge						
2. Soit $n \in \mathbb{N}$. On pose $I_n = \int_0^{+\infty} \frac{dx}{(1+x^2)^{n+1}}$. 2.a) Justifier que l'intégrale est définie pour tout $n \in \mathbb{N}$.							
0							

2.b) Déterminer une relation de récurrence entre I_n et I_{n+1} .							
			0				