Interrogation 3 Corrigé

1. Déterminer la nature des intégrales suivantes :

a)
$$\int_0^1 \ln(t) dt$$

☑ Converge

□ Diverge

b)
$$\int_0^{+\infty} \frac{1}{\sqrt{t}(1+t)} dt$$

☑ Converge

□ Diverge

c)
$$\int_{0}^{\frac{\pi}{2}} \tan(t) dt$$

□ Converge

☑ Diverge

d)
$$\int_0^{+\infty} (t^2 + 1)t^{-2} dt$$

□ Converge

☑ Diverge

a)
$$\int_{0}^{1} \ln(t) dt$$

b) $\int_{0}^{+\infty} \frac{1}{\sqrt{t}(1+t)} dt$
c) $\int_{0}^{\frac{\pi}{2}} \tan(t) dt$
d) $\int_{0}^{+\infty} (t^{2}+1)t^{-2} dt$
e) $\int_{1}^{+\infty} \frac{dt}{\sqrt{t^{4}+t^{3}}-t^{2}} dt$

□ Converge

☑ Diverge

f)
$$\int_0^1 \frac{1}{\sqrt{t} \ln(t)} dt$$

□ Converge

☑ Diverge

- b) la fonction est équivalente à ¹/_{√t} en 0 et à ¹/_{t√t} en +∞.
- c) on se ramène en 0 en posant $t = \frac{\pi}{2} u$ et on étudie $\int_0^{\frac{\pi}{2}} \frac{\cos(u)}{\sin(u)} du$. Cette intégrale diverge $\operatorname{car} \frac{\cos(u)}{\sin(u)} \sim \frac{1}{u}.$
- d) la fonction est équivalente à $\frac{1}{t^2}$ en 0.
- e) la fonction est équivalente à $\frac{2}{t}$ en +∞.
- f) La fonction $t\mapsto \frac{1}{\sqrt{t}\ln(t)}$ est intégrable sur $]0,\frac{1}{2}]$ car elle est négligeable devant $\frac{1}{\sqrt{t}}$. Par contre, pour étudier au voisinage de 1⁻ on pose t = 1 - h et on se ramène à considé- $\frac{1}{\sqrt{1-h}\ln(1-h)} \sim -\frac{1}{h}$. On en déduit que l'intégrale diverge par comparaison pour les fonctions positives.

Interrogation 3 Corrigé

- 2. Soit $n \in \mathbb{N}$. On pose $I_n = \int_0^{+\infty} \frac{dx}{(1+x^2)^{n+1}}$.
 - (a) Justifier que l'intégrale est définie pour tout $n \in \mathbb{N}$.

Corrigé

Soit $n \in \mathbb{N}$. On commence par remarquer que $x \mapsto \frac{1}{(1+x^2)^{n+1}}$ est continue sur $[0, +\infty[$ et $\frac{1}{(1+x^2)^{n+1}} \sim \frac{1}{t^{2(n+1)}}$ donc I_n est bien définie.

(b) Déterminer une relation de récurrence entre I_n et I_{n+1} .

Corrigé

Soit $n \in \mathbb{N}$. On commence par remarquer que $x \mapsto \frac{1}{(1+x^2)^{n+1}}$ est continue sur $[0, +\infty[$ et $\frac{1}{(1+x^2)^{n+1}} \sim \frac{1}{t^{2(n+1)}}$ donc I_n est bien définie.

On a alors par intégration par parties :

$$I_{n} = \int_{0}^{+\infty} \frac{dx}{(1+x^{2})^{n+1}}$$

$$= \left[\frac{x}{(1+x^{2})^{n+1}}\right]_{0}^{+\infty} + \int_{0}^{+\infty} \frac{2(n+1)x^{2}}{(1+x^{2})^{n+2}} dx \quad \text{CAR LE CROCHET CONVERGE}$$

$$= 2(n+1) \left(\int_{0}^{+\infty} \frac{1+x^{2}}{(1+x^{2})^{n+2}} dx - \int_{0}^{+\infty} \frac{1}{(1+x^{2})^{n+2}} dx\right)$$

$$= 2(n+1)I_{n} - 2(n+1)I_{n+1}$$

On en déduit que $I_{n+1} = \frac{2n+1}{2n+2}I_n$.