1. On rappelle que pour $t \in]-1, 1[, \ln(1-t) = -\sum_{k=1}^{\infty} \frac{t^k}{k}.$

Exprimer $\int_0^1 \frac{\ln(t) \ln(1-t)}{t} dt$ à l'aide de la somme d'une série.

Corrigé

Pour *t* ∈] − 1, 1[, $\ln(1-t) = -\sum_{k=1}^{\infty} \frac{t^k}{k}$. De sorte que pour *t* ∈]0, 1[,

$$\frac{\ln(t)\ln(1-t)}{t} = -\sum_{k=1}^{\infty} \frac{t^{k-1}\ln(t)}{k} = -\sum_{k=0}^{\infty} \frac{t^k\ln(t)}{k+1}$$

On veut appliquer le théorème d'intégration terme à terme. On pose pour tout $k \in \mathbb{N}$, f_k la fonction définie sur]0, 1[par

$$f_k: t \mapsto -\frac{t^k \ln(t)}{1+k}$$

- − La fonction $f_0: t \mapsto \ln t$ est intégrable sur]0,1] car elle est continue sur]0,1] et $\ln t = \mathop{O}_{t\to 0}\left(\frac{1}{\sqrt{t}}\right)$; pour $k \geqslant 1$, les fonctions f_k sont continues sur]0,1] et prolongeables par continuité en 0 car $t^k \ln(t) \xrightarrow[t\to 0]{} 0$. Elles sont donc intégrables sur]0,1].
- La série de fonctions $\sum_{k\geqslant 0} f_k$ converge simplement sur]0, 1[vers $t\mapsto \frac{\ln(t)\ln(1-t)}{t}$ qui est continue.
- Les fonctions f_k sont à valeurs positives

Par le théorème d'intégration terme à terme des séries de fonctions positives, dans $[0, +\infty]$,

$$\int_0^1 \frac{\ln(t)\ln(1-t)}{t} dt = \int_0^1 \sum_{k=0}^{\infty} f_k(t) dt = \sum_{k=0}^{+\infty} \int_0^1 f_k(t) dt$$

Soit $k \in \mathbb{N}$, on réalise une intégration par parties (le crochet converge et vaut 0 pour la même raison que ci-dessus) :

$$\int_0^1 f_k = \left[-\frac{t^{k+1} \ln t}{(k+1)^2} \right]_0^1 + \int_0^1 \frac{t^k}{(k+1)^2} dt = \frac{1}{(k+1)^3}$$

On en déduit que la fonction $t\mapsto \frac{\ln(t)\ln(1-t)}{t}$ est intégrable et que

$$\int_0^1 \frac{\ln(t)\ln(1-t)}{t} dt = \sum_{k=0}^{+\infty} \int_0^1 f_k = \sum_{k=1}^{+\infty} \frac{1}{k^3} = \zeta(3)$$

Interrogation 4 (maison) Corrigé

2. (a) Déterminer $\lim_{n \to \infty} \int_0^1 \sqrt{1 - u^n} du$

Corrigé

On veut appliquer le théorème de convergence dominée. On pose $f_n: u \mapsto \sqrt{1-u^n}$ définie et continue sur [0,1]. La suite de fonction converge simplement vers f définie par

$$f: u \mapsto \begin{cases} 1 & \text{si } x < 1 \\ 0 & \text{sinon.} \end{cases}$$

De plus, en posant φ la fonction constante égale à 1 qui est intégrable sur [0,1] on a, pour tout $n \in \mathbb{N}$, $|f_n| \leq \varphi$.

On en déduit par le théorème de convergence dominée que

$$\lim_{n \to \infty} \int_0^1 \sqrt{1 - u^n} du = \int_0^1 f(u) du = 1.$$

(b) En déduire un équivalent de $I_n = \int_0^n \sqrt{1 - \left(1 - \frac{x}{n}\right)^n} dx$.

Corrigé

On pose le changment de variable $u=\left(1-\frac{x}{n}\right)$ qui est affine. On a $du=-\frac{1}{n}dx$. On en déduit

$$\int_0^n \sqrt{1 - \left(1 - \frac{x}{n}\right)^n} dx = -n \int_1^0 \sqrt{1 - u^n} du = n \int_0^1 \sqrt{1 - u^n} du$$

Comme $\int_0^1 \sqrt{1-u^n} du \xrightarrow[n\to\infty]{} 1$ on a $I_n \sim n$.