Soit $A \in \mathcal{M}_n(\mathbb{C})$. On admet qu'il existe un couple (D, N) de matrices de $\mathcal{M}_n(\mathbb{C})$ qui vérifie que

- (C1) A = D + N
- (C2) La matrice D est diagonalisable
- (C3) La matrice N est nilpotente
- (C4) DN = ND

On sait de plus que D et N appartiennent à $\mathbb{C}[A]$.

Le couple (D, N) s'appelle la décomposition de Dunford de A. Son unicité est démontrée dans la partie I

Partie I - Unicité de la décomposition de Dunford

- 1. Soit E un \mathbb{C} -espace vectoriel de dimension n. Soient u et v deux endomorphismes diagonalisables de E qui commutent. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ les valeurs propres de u et pour tout $1 \leq i \leq p$, $E_{\lambda_i}(u)$ le sous-espace propre de u associé à la valeur propre λ_i .
 - a) Démontrer que les sous-espaces propres de u sont stables par v.

Pour tout $1 \leq i \leq p$, on note v_i l'endomorphisme induit par v sur $E_{\lambda_i}(u)$.

- b) Justifier que pour tout $i \in [1, p]$, v_i est diagonalisable et en déduire qu'il existe une base commune de diagonalisation pour u et v.
- 2. Soit M et M' deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ qui commutent. Démontrer que la matrice M-M' est diagonalisable.
- 3. Soit N et N' deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$ qui commutent, démontrer que la matrice N-N' est nilpotente.
- 4. Déterminer les matrices de $\mathcal{M}_n(\mathbb{C})$ qui sont à la fois diagonalisables et nilpotentes.
- 5. Soit (D', N') un couple de matrices de $\mathcal{M}_n(\mathbb{C})$ qui vérifie les conditions (C1), (C2), (C3) et (C4). Montrer que D' = D et N' = N.

Partie II - Quelques exemples

- 6. Donner le couple de la décomposition de Dunford d'une matrice A de $\mathcal{M}_n(\mathbb{K})$ lorsque A est diagonalisable, puis lorsque la matrice A de $\mathcal{M}_n(\mathbb{K})$ est nilpotente.
- 7. Le couple $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix}$ est-il la décomposition de Dunford de la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$?
- 8. Soit la matrice $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

Calculer son polynôme minimal χ_A , puis donner la décomposition de Dunford de A.

9. Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $A^2(A - I_n) = 0$. Justifier que le polynôme X(X - 1) est annulateur de la matrice A^2 . Démontrer que la décomposition de Dunford de la matrice A est donné par :

$$D = A^2 \text{ et } N = A - A^2$$

Partie III - Un exemple par deux méthodes

Soit la matrice
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

On note u l'endomorphisme de \mathbb{C}^3 canoniquement associé à la matrice A. On notera id l'application identité de \mathbb{C}^3 .

- 10. La matrice A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$? Justifier que : $\mathbb{C}^3 = \operatorname{Ker}(u - \operatorname{id}) \oplus \operatorname{Ker}(u - 2\operatorname{id})^2$.
- 11. Déterminer une base (e_1, e_2, e_3) de \mathbb{C}^3 telle que : $\operatorname{Ker}(u - \operatorname{id}) = \operatorname{Vect}\{e_1\}, \operatorname{Ker}(u - 2\operatorname{id}) = \operatorname{Vect}\{e_2\}, \operatorname{Ker}(u - 2\operatorname{id})^2 = \operatorname{Vect}\{e_2, e_3\}.$ Ecrire la matrice B de u dans la base $\mathscr{B} = (e_1, e_2, e_3)$ de \mathbb{C}^3 .
- 12. Déterminer la décomposition de Dunford de la matrice B et en déduire la décomposition de Dunford de la matrice A.
- 13. Décomposer en éléments simples la fraction $\frac{1}{(X-1)(X-2)^2}$ et en déduire deux polynômes U et V tels que :

$$(X-1)U(X) + (X-2)^2V(X) = 1$$
 avec $\deg(U) < 2$ et $\deg(V) < 1$.

- 14. On pose les endomorphismes : $p = V(u) \circ (u 2id)^2$ et $q = U(u) \circ (u id)$. Calculer p(x) + q(x) pour tout x vecteur de \mathbb{C}^3 . Démontrer que p est le projecteur sur $\operatorname{Ker}(u - id)$ parallèlement à $\operatorname{Ker}(u - 2id)^2$ et q est le projecteur sur $\operatorname{Ker}(u - 2id)^2$ parallèlement à $\operatorname{Ker}(u - id)$.
- 15. On pose d = p + 2q.
 - a) Écrire la matrice de d dans la base \mathcal{B} (définie à la question 11).
 - b) Déterminer la décomposition de Dunford de la matrice A en exprimant D et N comme polynômes de la matrice A (sous forme développée).