L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

L'exercice et le problème sont indépendants

Exercice

On pose pour tout entier naturel n, $W_n = \int_0^{\pi/2} \cos^n x \, dx$.

L'objet de cet exercice est de déterminer un équivalent de W_n lorsque n tend vers l'infini. On note f la fonction de $[0, \frac{\pi}{2}[$ vers \mathbb{R} définie par $f: x \mapsto \ln(\cos x)$.

1) Soit
$$n \in \mathbb{N}^*$$
. Montrer que $W_n = \frac{1}{\sqrt{n}} \int_0^{\frac{\pi}{2}\sqrt{n}} e^{nf(u/\sqrt{n})} du$.

On en déduit que $\sqrt{n}W_n = \int_0^{+\infty} g_n(u)du$ où g_n est définie par

$$g_n: u \mapsto \begin{cases} e^{nf(u/\sqrt{n})} & \text{si } u \leqslant \frac{\pi}{2}\sqrt{n} \\ 0 & \text{sinon} \end{cases}$$

- 2) a) Calculer f' la dérivée de f puis étudier la convexité de f' sur $[0, \frac{\pi}{2}[$.
 - b) En déduire que pour tout $x \in [0, \frac{\pi}{2}[, f(x)]] < -\frac{x^2}{2}$.
- 3) Montrer que la suite $(\sqrt{n}W_n)_{n\geqslant 1}$ converge vers une limite finie que l'on explicitera à l'aide d'une intégrale.

On pourra utiliser la question 2.b) pour obtenir une domination de la suite $(g_n)_{n\geqslant 1}$. En déduire un équivalent de W_n quand n tend vers $+\infty$.

4) On admet que par ailleurs $W_n \underset{n \to \infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

En déduire la valeur de $\int_0^{+\infty} e^{\frac{-u^2}{2}} du$.

- 5) a) Donner le développement limité d'ordre 4 de f en 0.

 On pourra commencer par donner le développement limité d'ordre 2 de f''.
 - b) En déduire pour $u \in \mathbb{R}^+$ fixé

$$\exp\left(nf(u/\sqrt{n})\right) - \exp\left(-\frac{u^2}{2}\right) \underset{n\to\infty}{\sim} -e^{-u^2/2}\frac{u^4}{12n}$$

c) Montrer que pour tout $x \in [0, \frac{\pi}{4}]$ on a : $\tan x \leqslant \frac{4}{\pi}x$, puis

$$-\frac{x^2}{2} - \frac{16}{\pi^2} \frac{x^4}{12} \leqslant f(x) \leqslant -\frac{x^2}{2}$$

d) On pose $Z_n = \int_0^{\frac{\pi}{4}\sqrt{n}} e^{nf(u/\sqrt{n})} du$ et $T_n = Z_n - \int_0^{\frac{\pi}{4}\sqrt{n}} e^{-u^2/2} du$

Montrer que la suite $(nT_n)_{n\geqslant 1}$ converge vers une limite qu'on exprimera à l'aide d'une intégrale.

- e) Calculer cette intégrale
- f) Montrer que $\int_{\pi/4}^{\pi/2} \cos^n x \, dx$ et $\int_{\frac{\pi}{4}\sqrt{n}}^{+\infty} e^{-u^2/2} du$ sont des $o(1/n^2)$ quand $n \to \infty$.
- g) En déduire un développement asymptotique à deux termes (plus un reste) de W_n quand n tend vers $+\infty$.

Problème

Pour tout réel strictement positif α , on se propose d'étudier la fonction S_{α} de la variable réelle x définie (sous réserve de convergence) comme somme de la série de fonctions suivante :

$$S_{\alpha}(x) = \sum_{n=0}^{+\infty} e^{-xn^{\alpha}} = 1 + e^{-x} + e^{-2^{\alpha}x} + e^{-3^{\alpha}x} + e^{-4^{\alpha}x} + \cdots$$

On étudie dans la partie I le domaine de définition et les premières propriétés de la fonction S_{α} . On introduit dans la partie II des intégrales auxiliaires afin d'obtenir le comportement asymptotique de $S_{\alpha}(x)$ lorsque x tend vers 0 et $+\infty$.

Partie I - Premières propriétés des fonctions S_{α}

- 1) Étude du cas particulier de la fonction S_1 .
 - a) Étudier la convergence simple et expliciter la somme de la série de fonctions définissant S_1 :

$$S_1(x) = \sum_{n=0}^{+\infty} e^{-xn}.$$

- b) Préciser la limite et un équivalent de $S_1(x)$ quand x tend vers 0.
- c) Préciser la limite de $S_1(x)$ quand x tend vers $+\infty$, et un équivalent de $S_1(x)-1$ en $+\infty$.
- 2) Étude du domaine de définition des fonctions S_{α} ($\alpha > 0$).
 - a) Examiner pour $x \le 0$ la nature de la série $\sum_{n \ge 0} e^{-xn^{\alpha}}$.
 - b) Pour tout réel x > 0, déterminer la limite de la suite $n \mapsto n^2 e^{-xn^{\alpha}}$. En déduire la nature de la série $\sum_{n \geq 0} e^{-xn^{\alpha}}$ pour x > 0.
 - c) Préciser le domaine de définition de la fonction S_{α} pour $\alpha > 0$.
- 3) Premières propriétés des fonctions S_{α} ($\alpha > 0$).
 - a) Pour tout $\varepsilon > 0$, établir la convergence normale de la série de fonctions $\sum_{n\geqslant 0} \left(x\mapsto e^{-xn^\alpha}\right) \text{ sur } [\varepsilon,+\infty[\text{. En déduire la continuité de la fonction } S_\alpha \text{ sur }]0,+\infty[\text{.}$
 - b) Montrer que : $\lim_{x \to +\infty} S_{\alpha}(x) = 1$.
 - c) Comparer $S_{\alpha}(x)$ et $S_{\alpha}(y)$ pour $0 < x \le y$ et préciser le sens de variation de la fonction S_{α} .

En déduire que la fonction S_{α} admet une limite finie ou infinie en 0^+ .

d) Soit x > 0 et N un entier naturel. Justifier que $S_{\alpha}(x) \geqslant \sum_{n=0}^{N} e^{-xn^{\alpha}}$. Quelle est la limite de $S_{\alpha}(x)$ quand x tend vers 0^{+} ?

Partie II - Étude de $S_{\alpha}(x)$ quand x tend vers 0 et $+\infty$

4) Comparaison de deux intégrales.

On considère pour tous réels $\alpha > 0$ et x > 0 les deux intégrales suivantes :

$$\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha - 1} du, \quad \text{et} \quad I(\alpha) = \int_0^{+\infty} e^{-xt^{\alpha}} dt.$$

- a) Montrer que l'intégrale $\Gamma(\alpha)$ converge. (On rappelle que $\alpha > 0$).
- b) À l'aide d'une intégration par parties, exprimer $\Gamma(\alpha+1)$ en fonction de $\Gamma(\alpha)$. Calculer $\Gamma(1)$ et en déduire $\Gamma(n+1)$ pour tout entier naturel n.
- c) Pour tout x > 0, effectuer dans l'intégrale $\Gamma\left(\frac{1}{\alpha}\right)$ le changement de variables défini par $u = xt^{\alpha}$.

Qu'en déduit-on pour l'intégrale $I(\alpha)$, et quelle relation obtient-on entre $\Gamma\left(\frac{1}{\alpha}\right)$ et $I(\alpha)$?

- 5) Recherche d'un équivalent de S_{α} en 0 ($\alpha > 0$).
 - a) En utilisant une comparaison série-intégrale, établir pour $\alpha>0$ et x>0 l'inégalité suivante :

$$0 \leqslant S_{\alpha}(x) - \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{x^{\frac{1}{\alpha}}} \leqslant 1$$

- b) Retrouver $\lim_{x\to 0^+} S_{\alpha}(x)$ puis donner un équivalent de $S_{\alpha}(x)$ pour $x\to 0^+$.
- 6) Majoration d'une intégrale auxiliaire ($\alpha > 0$).
 - a) Justifier pour tous réels $\alpha > 0$ et x > 0 la relation suivante :

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = \frac{1}{\alpha r^{\frac{1}{\alpha}}} \int_{r}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du.$$

b) Établir l'égalité suivante pour tous réels $\alpha > 0$ et x > 0 :

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 1} du = e^{-x} x^{\frac{1}{\alpha} - 1} + \left(\frac{1}{\alpha} - 1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha} - 2} du$$

c) En déduire l'équivalence suivante lorsque x tend vers $+\infty$:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \underset{x \to +\infty}{\sim} e^{-x} x^{\frac{1}{\alpha}-1}$$

On pourra utiliser l'intégration des relations de comparaison.

- d) En conclure que l'intégrale $\int_1^{+\infty} e^{-xt^{\alpha}} dt$ est négligeable devant e^{-x} lorsque x tend vers $+\infty$.
- 7) Étude asymptotique de S_{α} en $+\infty$ $(\alpha > 0)$.
 - a) Établir pour $\alpha > 0$ et x > 0 l'inégalité suivante :

$$\sum_{n=2}^{+\infty} e^{-xn^{\alpha}} \leqslant \int_{1}^{+\infty} e^{-xt^{\alpha}} dt$$

b) En déduire un équivalent de $S_{\alpha}(x) - 1$ quand x tend vers $+\infty$.