L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

L'exercice et le problème sont indépendants. Le sujet est assez long.

Exercice

Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie.

On note μ_u le polynôme minimal de u et χ_u son polynôme caractéristique.

Pour tout entier n, on notera $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ la base canonique de \mathbb{C}^n .

- 1) Soit $x \in E$. Montrer que $I_{u,x} = \{P \in \mathbb{C}[X], P(u)(x) = 0_E\}$ est un idéal de $\mathbb{C}[X]$ contenant l'idéal I_u des polynômes annulateurs de u.
- 2) En déduire qu'il existe un unique polynôme unitaire $\mu_{u,x}$ tel que $I_{u,x} = \mu_{u,x}\mathbb{C}[X]$ et montrer que $\mu_{u,x}$ divise μ_u .
- 3) Exemple : soit u l'endomorphisme de \mathbb{C}^4 canoniquement associé à la matrice

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 1 & -2 & 1 & 1 \\ 1 & -6 & 4 & 1 \\ 1 & -8 & 3 & 3 \end{pmatrix}$$

On admet que $\chi_u = \chi_A = (X - 1)^2 (X - 2)^2$.

- a) Déterminer les sous-espaces propres de u et en déduire le polynôme minimal μ_u de u.
- b) Montrer que $\mu_{u,\varepsilon_1} = \mu_u$.
- c) Trouver un vecteur x tel que $\mu_{u,x}$ soit de degré 1. Que vaut $\mu_{u,0_E}$?

On revient dans les questions suivantes au cas général (sauf mention du contraire).

- 4) Soient $\lambda_1, \ldots, \lambda_k$ les racines (deux à deux distinctes) de μ_u et $\alpha_1, \ldots, \alpha_k \in \mathbb{N}^*$ leurs multiplicités. On a donc $\mu_u = \prod_{i=1}^k (X \lambda_i)^{\alpha_i}$.
 - a) Montrer que pour tout entier i compris entre 1 et k, il existe un vecteur x_i dans l'ensemble $\operatorname{Ker}(u \lambda_i \operatorname{id}_E)^{\alpha_i} \setminus \operatorname{Ker}(u \lambda_i \operatorname{id}_E)^{\alpha_i-1}$.

Montrer que dans le cas contraire, $\frac{\mu_u}{X-\lambda_i} = (X-\lambda_i)^{\alpha_i-1} \prod_{j\neq i} (X-\lambda_j)^{\alpha_j}$ annule u.

- b) Montrer que $\mu_{u,x_i} = (X \lambda_i)^{\alpha_i}$.
- c) Soient $i, j \in [1, k]$. Déduire de la question précédente que $\left(\frac{\mu_u}{X \lambda_j}\right)(u)(x_i)$ est nul si $i \neq j$ et non nul si i = j.
- d) On pose $x = \sum_{i=1}^{k} x_i$. Montrer que pour tout $j \in [1, k]$, $\left(\frac{\mu_u}{X \lambda_j}\right)(u)(x) \neq 0_E$.

En déduire que $\mu_{u,x} = \mu_u$.

Un tel vecteur sera dit u-dominant

e) Soit u l'endomorphisme de \mathbb{C}^3 canoniquement associé à la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Donner son polynôme minimal, puis un vecteur u-dominant en appliquant la méthode précédente.

Problème II

Définitions et notations

- On appelle distribution de probabilité sur \mathbb{N} , toute fonction $\pi: \mathbb{N} \to [0,1]$ telle que $\sum_{x \in \mathbb{N}} \pi(x) = 1.$
- On appelle matrice de transition sur \mathbb{N} une application $S: \mathbb{N} \times \mathbb{N} \to [0,1]$ vérifiant que pour tout $x \in \mathbb{N}, \sum_{y \in \mathbb{N}} S(x,y) = 1$.

On notera que N n'est pas une matrice au sens du programme car $\mathbb N$ infini.

— Soit S, T deux matrices de transition sur \mathbb{N} on appelle produit de S et T et on note ST l'application $ST : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ définie par

$$ST: (x, z) \mapsto (ST)(x, z) = \sum_{y \in \mathbb{N}} S(x, y)T(y, z)$$

— Soit π une probabilité sur \mathbb{N} et S une matrice de transition, on note $\pi \cdot S$ la fonction de \mathbb{N} dans \mathbb{R} définie par

$$\pi \cdot S : y \mapsto \sum_{x \in \mathbb{N}} \pi(x) S(x, y)$$

— On note I l'application de $\mathbb{N} \times \mathbb{N}$ dans [0,1] définie par

$$I:(x,y)\mapsto I(x,y)=\left\{ egin{array}{ll} 1 & ext{si } x=y \\ 0 & ext{sinon} \end{array} \right.$$

On remarque et on ne demande pas de le vérifier que I est une matrice de transition sur \mathbb{N} .

Partie I : Généralités

Dans cette partie, nous étudions des propriétés générales des matrices de transition sur \mathbb{N} et des chaînes de Markov.

- 1) Soit S, T, R trois matrices de transition sur \mathbb{N} et π une distribution de probabilité sur \mathbb{N}
 - a) Montrer que ST est bien définie et est aussi une matrice de transition sur \mathbb{N} puis que $\pi \cdot S$ est bien définie et est une distribution de probabilité sur \mathbb{N} .
 - b) Vérifier que (ST)R = S(TR).

On admet (et on ne demande pas de le démontrer) que de même $\pi \cdot (ST) = (\pi \cdot S) \cdot T$.

Si S est une matrice de transition et si $n \in \mathbb{N}$ est un entier naturel on définit S^n par $S^0 = I$ et la relation de récurrence $S^{n+1} = S^n S$ si $n \ge 0$.

On montre aisément (et on ne demande pas de le vérifier) que S^n est alors une matrice de transition.

On considère un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$. Toutes les variables aléatoires du problème seront définies sur cet espace.

Soit S une matrice de transition. On appelle *chaîne de Markov homogène* à valeurs dans \mathbb{N} et de matrice de transition S, une suite $(X_n)_{n\geqslant 0}$ de variables aléatoires à valeurs dans \mathbb{N} telle que pour tout $n\geqslant 0$ et tout $(x_0,\ldots,x_n)\in\mathbb{N}^{n+1}$ on ait

$$\mathbf{P}(X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = \mathbf{P}(X_0 = x_0)S(x_0, x_1)S(x_1, x_2)\cdots S(x_{n-1}, x_n)$$

Dans toute la suite du problème, S désignera une matrice de transition et $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène à valeurs dans \mathbb{N} de matrice de transition S.

- 2) Pour tout $x \in \mathbb{N}$ et tout $n \in \mathbb{N}$, on pose $\pi_n(x) = \mathbf{P}(X_n = x)$. On définit ainsi pour tout $n \in \mathbb{N}$ une distribution de probabilité π_n sur \mathbb{N} .
 - a) Soit $n \ge 0$ et $(x,y) \in \mathbb{N}^2$. Justifier que

$$\mathbf{P}(X_n = x) = \sum_{(x_0, \dots, x_{n-1}) \in \mathbb{N}^n} \mathbf{P}(X_0 = x_0) S(x_0, x_1) S(x_1, x_2) \cdots S(x_{n-1}, x)$$

En déduire que : $\mathbf{P}(X_n=x,X_{n+1}=y)=\mathbf{P}(X_n=x)S(x,y)$. Ainsi, lorsque $(X_n=x)$ n'est pas négligeable on a

$$S(x,y) = \mathbf{P}_{(X_n=x)}(X_{n+1} = y)$$

- b) Soit $n \in \mathbb{N}$. Montrer que pour tout $y \in \mathbb{N}$, $\pi_{n+1}(y) = (\pi_n \cdot S)(y)$. En déduire que $\pi_n = \pi_0 \cdot S^n$.
- 3) Soit $p \in]0,1[$. On suppose dans cette question seulement que S est définie par

$$S: (x,y) \mapsto \begin{cases} p & \text{si } y = x+1\\ 1-p & \text{si } y = 0\\ 0 & \text{sinon} \end{cases}$$

- a) Vérifier que S est bien une matrice de transition sur \mathbb{N} .
- b) On suppose que π_0 est donnée par $\pi_0(0) = 1$ et $\pi_0(x) = 0$ pour x > 0. Calculer π_1, π_2 et déterminer une formule générale pour π_n avec $n \in \mathbb{N}$. En déduire qu'il existe une distribution de probabilité π_∞ sur \mathbb{N} telle que pour tout $x \in \mathbb{N}, \pi_n(x) \xrightarrow[n \to +\infty]{} \pi_\infty(x)$ et la calculer.

Partie II : Récurrence d'une chaîne de Markov

On conserve les notations et hypothèses de la partie I.

On admet qu'on peut choisir $(\Omega, \mathcal{A}, \mathbf{P})$ et $(X_n)_{n \geq 0}$ tels que

$$\forall x_0 \in \mathbb{N}^*, \quad \mathbf{P}(X_0 = x_0) \neq 0$$

On note S_+ la restriction de la matrice de transition S à $\mathbb{N}^* \times \mathbb{N}^*$.

On remarquera (et on ne demande pas de le démontrer) que, pour tout $x \in \mathbb{N}^*$, $\sum_{y \in \mathbb{N}^*} S(x,y) \in$

[0, 1] mais qu'il peut être strictement inférieur à 1.

On dit que S_+ est une sous-matrice de transition sur \mathbb{N}^* .

On définit de même les produits et puissances de sous-matrices de transition comme à la question 1), avec des sommations indexées par \mathbb{N}^* et non par \mathbb{N} .

Pour $n \in \mathbb{N}$, on note alors S_+^n pour $(S_+)^n$. Par exemple pour x, z dans \mathbb{N}^* ,

$$S_{+}^{2}(x,z) = \sum_{y \in \mathbb{N}^{*}} S_{+}(x,y) S_{+}(y,z)$$

Pour $u: \mathbb{N}^* \to [0,1]$ on note $S_+ \odot u$ la fonction définie de \mathbb{N}^* dans [0,1] par

$$S_+ \odot u : x \mapsto \sum_{y \in \mathbb{N}^*} S_+(x, y) u(y)$$

4) Justifier que $S_+ \odot u$ est bien à valeurs dans [0,1].

On pose $U_{-1} = \Omega$ et, pour $n \ge 0$, $U_n = \bigcap_{k=0}^n (X_k \in \mathbb{N}^*)$. On pose aussi $U_\infty = \bigcap_{k=0}^\infty (X_k \in \mathbb{N}^*)$.

On notera alors pour $x \in \mathbb{N}^*$

$$u_n(x) = \mathbf{P}_{(X_0=x)}(U_n) \text{ et } u_{\infty}(x) = \mathbf{P}_{(X_0=x)}(U_{\infty})$$

- 5) Justifier que pour tout $x \in \mathbb{N}^*$, $u_{\infty}(x) = \lim_{n \to \infty} u_n(x)$.
- 6) Soit $n \in \mathbb{N}$, soient x, y dans \mathbb{N}^* , montrer que

$$\mathbf{P}(X_0 = x)S_+^n(x, y) = \mathbf{P}((X_0 = x) \cap U_{n-1} \cap (X_n = y))$$

On pourra procéder comme à la question 2.a)

En déduire que

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{N}^*, \quad u_n(x) = \sum_{y \in \mathbb{N}^*} S_+^n(x, y)$$

Ainsi les fonctions u_n et la fonction u_∞ ne dépendent que de S et non de $(\Omega, \mathcal{A}, \mathbf{P}, (X_n))$

- 7) Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = S_+ \odot u_n$.
- 8) Montrer que $u_{\infty} = S_{+} \odot u_{\infty}$.

 On pourra établir, pour tout $x \in \mathbb{N}^{*}$, la convergence normale sur \mathbb{N}^{*} de la série $\sum_{y\geqslant 1} f_{y}$ où $f_{y}: n \mapsto S_{+}(x, y)u_{n}(y)$
- 9) Soit $v : \mathbb{N}^* \to [0, 1]$ une fonction vérifiant $v = S_+ \odot v$. Montrer que $v \leqslant u_{\infty}$.

 On pourra commencer par comparer v et u_0 .

Partie III : Processus de naissance et de mort

On suppose dans la suite du problème que la matrice de transition S vérifie que pour tout $(x,y) \in \mathbb{N}^2$, si |x-y| > 1 alors S(x,y) = 0. Pour simplifier les notations, on pose pour tout $x \in \mathbb{N}$, $\lambda_x = S(x,x+1)$ et $\mu_x = S(x,x-1)$ en convenant que $\mu_0 = 0$. On suppose de plus que $\lambda_x > 0$ pour $x \in \mathbb{N}$ et $\mu_x > 0$ pour $x \ge 1$.

10) Soit $x \in \mathbb{N}$. Préciser en fonction de λ_x et μ_x la valeur de S(x,x).

11) Montrer que pour tout $x \in \mathbb{N}^*$, $u_{\infty}(x+1) - u_{\infty}(x) = \frac{\mu_x}{\lambda_x}(u_{\infty}(x) - u_{\infty}(x-1))$.

On pourra utiliser le résultat de la question 8).

En déduire que

$$u_{\infty}(x) = u_{\infty}(1) \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i}$$

On rappelle que, par convention:

- Pour x = 0, $\sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} = 0$ car c'est une somme vide.
- Pour $x=1, \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} = \sum_{i=0}^{0} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} = 1$ car c'est une somme ne comprenant qu'un seul terme qui est un produit vide.

On pose
$$A = \sum_{i=0}^{\infty} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} \in [0, +\infty].$$

- 12) On suppose que $A = +\infty$.
 - a) Montrer que $u_{\infty} = \tilde{0}$.

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov associée à S. On reprend les notations définies après la question 4) de la partie II.

- b) Montrer que $\mathbf{P}(U_{\infty}) = 0$
- c) Montrer $\mathbf{P}\left(\bigcap_{N\in\mathbb{N}}\bigcup_{n\geqslant N}(X_n=0)\right)=1.$
- 13) On suppose que $A < +\infty$. Déterminer u_{∞} .
- 14) a) En procédant de même, trouver une condition nécéssaire et suffisante pour qu'il existe une distribution de probabilité π sur \mathbb{N} telle que $\pi = \pi.S$ et exprimer π dans ce cas.
 - b) Déterminer π si suppose que pour tout $x \in \mathbb{N}$, $\lambda_x = p$ et que pour x > 0, $\mu_x = q$ où p < q.