Exercice

- 1) Soit $x \in E$. Montrons que $I_{u,x} = \{P \in \mathbb{C}[X], P(u)(x) = 0_E\}$ est un idéal de $\mathbb{C}[X]$.
 - Le polynôme nul appartient à $I_{u,x}$ donc $I_{u,x} \neq \emptyset$.
 - Soit $(P,Q) \in I_{u,x}^2$. On a

$$(P - Q)(u)(x) = P(u)(x) - Q(u)(x) = 0_E - 0_E = 0_E.$$

Donc $(P-Q) \in I_{u,x}$. On a montré que $I_{u,x}$ est un sous-groupe du groupe $(\mathbb{C}[X], +)$.

— Soit $P \in I_{u,x}$ et $Q \in \mathbb{C}[X]$, PQ appartient à $I_{u,x}$ en effet,

$$(PQ)(u)(x) = Q(u)(P(u)(x)) = Q(u)(0_E) = 0_E.$$

L'ensemble $I_{u,x}$ est bien un idéal de $\mathbb{C}[X]$.

De plus si $P \in I_u$ alors P(u) est l'application nulle donc P(u)(x) = 0 et de ce fait $P \in I_{u,x}$. On a bien $I_u \subset I_{u,x}$.

2) On sait que l'anneau $\mathbb{C}[X]$ est principal. Comme $I_{u,x}$ est un idéal non réduit à $\{0\}$ (car il contient I_u qui n'est pas réduit à $\{0\}$ car il contient χ_u), il existe un unique polynôme unitaire $\mu_{u,x}$ tel que $I_{u,x} = \mu_{u,x}\mathbb{C}[X]$.

Maintenant, $I_u \subset I_{u,x}$ donc, en particulier, $\mu_u \in I_{u,x}$. De ce fait $\mu_{u,x}$ divise μ_u .

- 3) a) Comme $\chi_u = (X-1)^2(X-2)^2$, le spectre de u est $Sp(u) = \{1, 2\}$.
 - Calcul de $E_1(u)$: On détermine $Ker(u id_E)$. On résout le système

$$\begin{pmatrix} 0 & 2 & 0 & -1 \\ 1 & -3 & 1 & 1 \\ 1 & -6 & 3 & 1 \\ 1 & -8 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 1 & -6 & 3 & 1 \\ 1 & -8 & 3 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & -3 & 2 & 0 \\ 0 & -5 & 2 & 1 \end{pmatrix} \qquad L_1 \leftrightarrow L_2$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & -5 & 2 & 1 \end{pmatrix} \qquad L_3 \leftarrow L_3 - L_1$$

$$L_4 \leftarrow L_4 - L_1$$

$$\sim \begin{pmatrix} 1 & -3 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 4 & -3 \\ 0 & 0 & 4 & -3 \end{pmatrix} \qquad L_3 \leftarrow 2L_3 + 3L_2$$

$$L_4 \leftarrow 2L_4 + 5L_2$$

$$\sim \begin{pmatrix} \boxed{1} & -3 & 1 & 1 \\ 0 & \boxed{2} & 0 & -1 \\ 0 & 0 & \boxed{4} & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Il ne reste plus qu'à résoudre le système

$$\begin{cases} x - 3y + z &= -t \\ 2y &= t \\ 4z &= 3t \end{cases}$$

On obtient $E_1(u) = \text{Vect}((-1, 2, 3, 4)).$

— Calcul de $E_2(u)$: On détermine $Ker(u-2id_E)$. On résout le système

$$\begin{pmatrix} -1 & 2 & 0 & -1 \\ 1 & -4 & 1 & 1 \\ 1 & -6 & 2 & 1 \\ 1 & -8 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{-1} & 2 & 0 & -1 \\ 0 & \boxed{-2} & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Il ne reste plus qu'à résoudre le système

$$\begin{cases}
-x + 2y &= t \\
-2y &= -z
\end{cases}$$

On obtient $E_2(u) = \text{Vect}((-1, 0, 0, 1), (2, 1, 2, 0)).$

Le polynôme minimal de u divise χ_u et 1 et 2 sont racines de μ_u . On en déduit que μ_u peut être $(X-1)(X-2), (X-1)^2(X-2), (X-2)^2(X-1)$ ou $(X-1)^2(X-2)^2$. On vérifie aisément que (X-1)(X-2) n'annule pas A et que $(X-1)^2(X-2)(A) = 0$ donc $\mu_u = (X-1)^2(X-2)$.

b) On a $\varepsilon_1 = (1, 0, 0, 0), u(\varepsilon_1) = (1, 1, 1, 1)$ et $u^2(\varepsilon_1) = (2, 1, 0, -1)$. On pose

$$M = \operatorname{Mat}(\varepsilon_1, u(\varepsilon_1), u^2(\varepsilon_1)) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

C'est une matrice de rang 3. La famille $\varepsilon_1, u(\varepsilon_1)$ et $u^2(\varepsilon_1)$ est donc libre. De ce fait, il n'existe pas de polynôme (non nuls) de degré inférieur ou égal à 2 dans I_{u,ε_1} . Donc μ_{u,ε_1} est de degré au moins 3 mais comme il divise $\mu_u = (X-1)^2(X-2)$ on en déduit que $\mu_u = \mu_u$.

- c) Il suffit de prendre un vecteur propre. Par exemple x = (-1, 2, 3, 4). On a u(x) = x, donc $X 1 \in I_{u,x}$ ce qui implique que $\mu_{u,x} = X 1$.
- d) L'idéal $I_{u,0_E}$ est $\mathbb{C}[X]$ en entier. Il est engendré par 1 donc $\mu_{u,0_E} = 1$.
- 4) a) Soit $i \in [1, k]$. Supposons par l'absurde que $\operatorname{Ker}(u \lambda_i \operatorname{id}_E)^{\alpha_i} = \operatorname{Ker}(u \lambda_i \operatorname{id}_E)^{\alpha_i 1}$. Notons Q le polynôme $\prod_{\substack{j=1 \ i \neq i}}^n (X \lambda_j)^{\alpha_j}$ de telle sorte que $\mu_u = (X \lambda_i)^{\alpha_i}Q$.

Pour tout x dans E,

$$0_E = \mu_u(u)(x) = (u - \lambda_i \mathrm{id}_E)^{\alpha_i}(Q(u)(x))$$

On en déduit que $Q(u)(x) \in \text{Ker}(u - \lambda_i \text{id}_E)^{\alpha_i} = \text{Ker}(u - \lambda_i \text{id}_E)^{\alpha_i - 1}$ et donc

$$(u - \lambda_i \mathrm{id}_E)^{\alpha_i - 1}(Q(u)(x)) = \frac{\mu_u}{X - \lambda_i}(u)(x) = 0_E.$$

C'est-à-dire que $\frac{\mu_u}{X-\lambda_i}$ est un polynôme annulateur de u ce qui est absurde car il est de degré strictement inférieur à μ_u .

Il existe donc bien $x_i \in \text{Ker}(u - \lambda_i \text{id}_E)^{\alpha_i} \setminus \text{Ker}(u - \lambda_i \text{id}_E)^{\alpha_i - 1}$

b) Par définition, $(X - \lambda_i)^{\alpha_i}(u)(x_i) = (u - \lambda_i \mathrm{id}_E)^{\alpha_i}(x_i) = 0_E$. Donc μ_{u,x_i} divise $(X - \lambda_i)^{\alpha_i}$ mais comme $(X - \lambda_i)^{\alpha_i - 1}(u)(x_i) = (u - \lambda_i \mathrm{id}_E)^{\alpha_i - 1}(x_i) \neq 0_E$. On a que $\mu_{u,x_i} = (X - \lambda_i)^{\alpha_i}$.

c) Soient $i, j \in [1, k]^2$.

— Si
$$i \neq j$$
 alors $\mu_{u,x_i} = (X - \lambda_i)^{\alpha_i}$ divise $\frac{\mu_u}{X - \lambda_j}$ donc $\frac{\mu_u}{X - \lambda_j}$ appartient à I_{u,x_i} ce qui implique que $\left(\frac{\mu_u}{X - \lambda_j}\right)(u)(x_i)$ est nul.

— Si
$$i = j$$
 alors $\mu_{u,x_i} = (X - \lambda_i)^{\alpha_i}$ ne divise pas $\frac{\mu_u}{X - \lambda_j}$ donc $\frac{\mu_u}{X - \lambda_j}$ n'appartient pas à I_{u,x_i} ce qui implique que $\left(\frac{\mu_u}{X - \lambda_j}\right)(u)(x_i)$ n'est pas nul.

d) On pose
$$x = \sum_{i=1}^{k} x_i$$
.

Pour tout $j \in [1, k]$,

$$\left(\frac{\mu_u}{X - \lambda_j}\right)(u)(x) = \sum_{i=1}^k \left(\frac{\mu_u}{X - \lambda_j}\right)(u)(x_i) = \left(\frac{\mu_u}{X - \lambda_j}\right)(u)(x_j) \neq 0_E.$$

On vient de voir qu'aucun diviseur de μ_u de degré 1 de moins que μ_u appartenait à $I_{u,x}$ donc $\mu_u = \mu_u$.

e) L'endomorphisme u est diagonal et son polynôme minimal est $\mu_u = (X-1)(X-2)$.

On a donc, $\lambda_1 = 1, \alpha_1 = 1, \lambda_2 = 2, \alpha_2 = 1$.

Comme $\operatorname{Ker}(u - \operatorname{id}_E)^0 = \{0_E\}$, on cherche donc $x_1 \in \operatorname{Ker}(u - \operatorname{id}_E) \setminus \{0_E\}$. On peut prendre $x_1 = \varepsilon_1$.

De même on cherche $x_2 \in \text{Ker}(u - 2id_E) \setminus \{0_E\}$. On peut prendre $x_2 = \varepsilon_2$.

Il reste à poser $x = \varepsilon_1 + \varepsilon_2$.

Problème II

Partie I: Généralités

1) a) Soit S, T deux matrices de transition.

Soit x, z dans \mathbb{N} . Pour tout $y \in \mathbb{N}$, $0 \leqslant S(x, y)T(y, z) \leqslant S(x, y)$ car $T(y, z) \in [0, 1]$. On en déduit dans $[0, +\infty]$

$$0 \leqslant ST(x,z) = \sum_{y \in \mathbb{N}} S(x,y)T(y,z) \leqslant \sum_{y \in \mathbb{N}} S(x,y) = 1$$

De plus, dans $[0, +\infty]$, par sommation par paquets

$$\sum_{z \in \mathbb{N}} ST(x, z) = \sum_{z \in \mathbb{N}} \left(\sum_{y \in \mathbb{N}} S(x, y) T(y, z) \right) = \sum_{y \in \mathbb{N}} S(x, y) \left(\sum_{z \in \mathbb{N}} T(y, z) \right) = \sum_{y \in \mathbb{N}} S(x, y) = 1$$

Cela montre que ST est une matrice de transition.

De même si π est une probabilité sur \mathbb{N} . Pour tout $x \in \mathbb{N}$ et tout $y \in \mathbb{N}$, comme $S(x,y) \in [0,1]$,

$$0 \leqslant \pi(x)S(x,y) \leqslant \pi(x)$$

On en déduit que dans $[0, +\infty]$,

$$0 \leqslant (\pi \cdot S)(y) = \sum_{x \in \mathbb{N}} \pi(x)S(x,y) \leqslant \sum_{x \in \mathbb{N}} \pi(x) = 1$$

La fonction π est bien définie et de plus, par sommation par paquets dans $[0, +\infty]$

$$\sum_{y \in \mathbb{N}} (\pi \cdot S)(y) = \sum_{y \in \mathbb{N}} \left(\sum_{x \in \mathbb{N}} \pi(x) S(x, y) \right) = \sum_{x \in \mathbb{N}} \pi(x) \left(\sum_{y \in \mathbb{N}} S(x, y) \right) = \sum_{x \in \mathbb{N}} \pi(x) = 1$$

Cela montre que $\pi \cdot S$ est une probabilité sur \mathbb{N} .

b) Soit S, T, R sont trois matrices de transition. Pour x, u dans \mathbb{N} par sommations par paquets dans $[0, +\infty]$,

$$(ST)R(x,u) = \sum_{z \in \mathbb{N}} ST(x,z)R(z,u) = \sum_{z \in \mathbb{N}} \sum_{y \in \mathbb{N}} S(x,y)T(y,z)R(z,u)$$
$$= \sum_{y \in \mathbb{N}} S(x,y) \sum_{z \in \mathbb{N}} T(y,z)R(z,y) = S(TR)(x,u)$$

Cela montre que (ST)R = S(TR).

2) a) La famille $\left(\bigcap_{i=0}^{n-1} (X_i = x_i)\right)_{(x_0,\dots,x_{n-1}) \in \mathbb{N}^n}$ est un système complet d'événements. On a donc

$$\mathbf{P}(X_n = x) = \sum_{(x_0, \dots, x_{n-1}) \in \mathbb{N}^n} \mathbf{P}(X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = x)$$

$$= \sum_{(x_0, \dots, x_{n-1}) \in \mathbb{N}^n} \mathbf{P}(X_0 = x_0) S(x_0, x_1) S(x_1, x_2) \cdots S(x_{n-1}, x)$$

On en déduit que pour $x, y \in \mathbb{N}$ et $n \ge 0$

$$\mathbf{P}(X_{n} = x, X_{n+1} = y) = \sum_{(x_{0}, \dots, x_{n-1}) \in \mathbb{N}^{n}} \mathbf{P}(X_{0} = x_{0}, \dots, X_{n-1} = x_{n-1}, X_{n} = x, X_{n+1} = y)$$

$$= \sum_{(x_{0}, \dots, x_{n-1}) \in \mathbb{N}^{n}} \mathbf{P}(X_{0} = x_{0}) S(x_{0}, x_{1}) S(x_{1}, x_{2}) \cdots S(x_{n-1}, x) S(x, y)$$

$$= S(x, y) \sum_{(x_{0}, \dots, x_{n-1}) \in \mathbb{N}^{n}} \mathbf{P}(X_{0} = x_{0}) S(x_{0}, x_{1}) S(x_{1}, x_{2}) \cdots S(x_{n-1}, x)$$

$$= \mathbf{P}(X_{n} = x) S(x, y)$$

b) Soit $n \in \mathbb{N}$ et $y \in \mathbb{N}$. Comme $((X_n = x))_{x \in \mathbb{N}}$ est un système complet d'événements, par la formule des probabilités totales

$$\pi_{n+1}(y) = \mathbf{P}(X_{n+1} = y) = \sum_{x \in \mathbb{N}} \mathbf{P}(X_n = x_n, X_{n+1} = y) = \sum_{x \in \mathbb{N}} \mathbf{P}(X_n = x) S(x, y) = (\pi_n \cdot S)(y)$$

Cela montre que $\pi_{n+1} = \pi_n \cdot S$.

Par une récurrence immédiate $\pi_n = \pi_0 \cdot S^n$ pour tout $n \in \mathbb{N}$.

3) a) Pour $x, y \in \mathbb{N}, S(x, y) \in [0, 1].$

Soit $x \in \mathbb{N}$,

$$\sum_{y \in \mathbb{N}} S(x, y) = S(x, 0) + S(x, x + 1) = 1 - p + p = 1$$

La matrice S est bien une matrice de transition sur \mathbb{N} .

b) On a montré que $\pi_1 = \pi_0 \cdot S$. On en déduit que pour tout $y \in \mathbb{N}$,

$$\pi_1(y) = \sum_{x \in \mathbb{N}} \pi_0(x) S(x, y) = S(0, y)$$

On en déduit que $\pi_1(0) = S(0,0) = (1-p), \, \pi_1(1) = S(0,1) = p$ et $\pi_1(x) = 0$ pour x > 1.

De même pour tout $y \in \mathbb{N}$,

$$\pi_2(y) = \sum_{x \in \mathbb{N}} \pi_1(x) S(x, y) = \pi_1(0) S(0, y) + \pi_1(1) S(1, y)$$

On en déduit que $\pi_2(0) = S(0,0) = (1-p)^2 + (1-p)p = (1-p)$, $\pi_2(1) = p(1-p)$, $\pi_2(2) = p^2$ et $\pi_2(x) = 0$ pour x > 2.

Notons alors q = 1 - p. Montrons par récurrence que pour tout $n \in \mathbb{N}$,

$$\pi_n : x \mapsto \begin{cases} qp^x & \text{si } x < n \\ p^n & \text{si } x = n \\ 0 & \text{sinon} \end{cases}$$

Les exemples ci-dessus montrent que la propriété est vraie pour n=0,1,2.

Supposons que la propriété est vraie pour un entier n et calculons π_{n+1} .

Soit y > 0,

$$\pi_{n+1}(y) = \sum_{x \in \mathbb{N}} \pi_n(x) S(x, y) = \pi_n(y - 1) p$$

Cela montre que $\pi_{n+1}(y) = qp^y$ si y < n+1 et $\pi_{n+1}(n+1) = p^{n+1}$. De plus

$$\pi_{n+1}(0) = \sum_{x \in \mathbb{N}} \pi_n(x) S(y, 0) = q \sum_{x \in \mathbb{N}} \pi_n(x) = q$$

On en déduit que pour tout $x \in \mathbb{N}$, $\pi_n(x) \xrightarrow[n \to +\infty]{} qp^x$.

Partie II : Récurrence d'une chaine de Markov

4) Soit $x \in \mathbb{N}^*$, $(S_+ \odot u)(x) \ge 0$ comme somme de termes positifs. De plus comme pour tout $y \in \mathbb{N}^*$, $u(y) \le 1$,

$$(S_+ \odot u)(x) = \sum_{y \in \mathbb{N}^*} S_+(x, y)u(y) \leqslant \sum_{y \in \mathbb{N}^*} S_+(x, y) \leqslant 1$$

5) Par continuité décroissante pour la probabilité $\mathbf{P}_{(X_0=x)}$,

$$u_{\infty}(x) = \mathbf{P}_{(X_0 = x)} \left(\bigcap_{n \geqslant 1}^{\infty} (X_k \in \mathbb{N}^*) \right) = \lim_{n \to +\infty} \mathbf{P}_{(X_0 = x)} \left(\bigcap_{k=1}^{n} (X_k \in \mathbb{N}^*) \right) = \lim_{n \to +\infty} u_n(x)$$

6) Soit x, y dans \mathbb{N}^* .

Montrons par récurrence sur $n \in \mathbb{N}$ que pour $n \geq 0$,

$$\mathbf{P}(X_0 = x)S_+^n(x, y) = \mathbf{P}((X_0 = x) \cap U_{n-1} \cap (X_n = y))$$

— Initialisation. Pour $n=0, S_+^0=I$ et $U_{-1}=\Omega$. On en déduit que

$$\mathbf{P}((X_0 = x) \cap U_{-1} \cap (X_0 = y)) = \delta_{x,y} \mathbf{P}(X_0 = x) = \mathbf{P}(X_0 = x) I(x,y)$$

— Hérédité. Soit $n \ge 0$. On suppose la propriété vraie au rang n. On voit que

$$U_n \cap (X_{n+1} = y) = \bigcup_{x_n \in \mathbb{N}^*} U_{n-1} \cap (X_n = x_n) \cap (X_{n+1} = y)$$

Les événements de l'union de droite étant disjoints,

$$\mathbf{P}((X_{0} = x) \cap U_{n} \cap (X_{n+1} = y)) \\
= \sum_{(x_{1}, \dots, x_{n}) \in (\mathbb{N}^{*})^{n}} \mathbf{P}(X_{0} = x, X_{1} = x_{1} = \dots, X_{n} = x_{n}, X_{n+1} = y) \\
= \sum_{(x_{1}, \dots, x_{n}) \in (\mathbb{N}^{*})^{n}} \mathbf{P}(X_{0} = x) S_{+}(x, x_{1}) \cdots S_{+}(x_{n-1}, x_{n}) S_{+}(x_{n}, y) \\
= \sum_{x_{n} \in \mathbb{N}^{*}} \left(\sum_{(x_{1}, \dots, x_{n-1}) \in (\mathbb{N}^{*})^{n-1}} \mathbf{P}(X_{0} = x) S_{+}(x, x_{1}) \cdots S_{+}(x_{n-2}, x_{n-1}) \right) S_{+}(x_{n}, y) \\
= \sum_{x_{n} \in \mathbb{N}^{*}} \left(\sum_{(x_{1}, \dots, x_{n-1}) \in (\mathbb{N}^{*})^{n-1}} \mathbf{P}(X_{0} = x, X_{1} = x_{1} = \dots, X_{n} = x_{n}) \right) S_{+}(x_{n}, y) \\
= \sum_{x_{n} \in \mathbb{N}^{*}} \mathbf{P}((X_{0} = x) \cap U_{n-1} \cap (X_{n} = x_{n})) S_{+}(x_{n}, y) \\
= \mathbf{P}(X_{0} = x) \sum_{x_{n} \in \mathbb{N}^{*}} S_{+}^{n}(x, x_{n}) S_{+}(x_{n}, y) \\
= \mathbf{P}(X_{0} = x) S_{+}^{n+1}(x, y)$$

La propriété voulue est démontrée par récurrence.

On voit alors que

$$U_n = \bigcup_{y \in \mathbb{N}^*} \left(U_{n-1} \cap (X_n = y) \right)$$

Les événements étant deux à deux disjoints,

$$\mathbf{P}((X_0 = x) \cap U_n) = \sum_{y \in \mathbb{N}^*} \mathbf{P}((X_0 = x) \cap U_{n-1} \cap (X_n = y)) = \mathbf{P}(X_0 = x) \sum_{y \in \mathbb{N}^*} S_+(x, y)$$

En divisant par $P(X_0 = x)$ qui est supposé non nul,

$$u_n(x) = \sum_{y \in \mathbb{N}^*} S_+^n(x, y)$$

7) Soit $x \in \mathbb{N}^*$, par sommation par paquets,

$$u_{n+1}(x) = \sum_{y \in \mathbb{N}^*} S_+^{n+1}(x,y) = \sum_{y \in \mathbb{N}^*} \sum_{z \in \mathbb{N}^*} S_+(x,z) S_+^n(z,y) = \sum_{z \in \mathbb{N}^*} S_+(x,z) \sum_{y \in \mathbb{N}^*} S_+^n(z,y) = \sum_{z \in \mathbb{N}^*} S_+(x,z) u_n(z)$$

On a donc $u_{n+1}(x) = (S_+ \odot u_n)(x)$.

Finalement $u_{n+1} = S_+ \odot u_n$.

8) Soit $x \in \mathbb{N}^*$ fixé. On pose pour $y \in \mathbb{N}^*$, $f_y : n \mapsto S_+(x,y)u_n(y)$. Comme $u_n(y) \in [0,1]$, $||f_y||_{\infty} \leq S_+(x,y)$. On en déduit que la série $\sum_{y\geqslant 0} ||f_y||_{\infty}$ converge. La série de fonctions $\sum_y f_y$ converge normalement donc uniformément sur \mathbb{N} .

De plus, pour tout $y \in \mathbb{N}^*$, $f_y(n) \underset{n \to +\infty_+}{S} (x,y) u_\infty(y)$ par la question 5). En appliquant le théorème de double limite on obtient que

$$u_{\infty}(x) = \sum_{y \in \mathbb{N}^*} S_+(x, y) u_{\infty}(y) = (S_+ \odot u_{\infty})(x)$$

On a bien montré que $u_{\infty} = S_{+} \odot u_{\infty}$.

9) Soit $v: \mathbb{N}^* \to [0,1]$ une fonction vérifiant $v = S_+ \odot v$. Par définition, pour tout $x \in \mathbb{N}^*$, $v(x) \leq 1 = u_0(x)$ donc $v \leq u_0$. Or, de manière générale si w, w' sont deux fonctions à valeurs dans [0,1] telles que $w \leq w'$ alors $S \odot w \leq S \odot w'$ car pour $x \in \mathbb{N}$,

$$(S \odot w)(x) = \sum_{y \in \mathbb{N}^*} S_+(x, y)w(y) \leqslant \sum_{y \in \mathbb{N}^*} S_+(x, y)w'(y) = (S_+ \odot w')(x)$$

On en déduit par une récurrence immédiate que pour tout $n \in \mathbb{N}$, $v \leq u_n$. En faisant tendre n vers $+\infty$, on obtient que $v \leq u_\infty$.

Partie III: Processus de naissance et de mort

10) Soit $x \in \mathbb{N}$, par définition d'une matrice transition, avec la convention choisie,

$$S(x,x) = 1 - S(x,x+1) - S(x,x-1) = 1 - \lambda_x - \mu_x$$

11) On a vu à la question 8) que $u_{\infty} = S_{+} \odot u_{\infty}$. Avec les notations ce cette partie on obtient que pour tout $x \in \mathbb{N}^{*}$,

$$u_{\infty}(x) = \sum_{y \in \mathbb{N}^*} S_{+}(x, y) u_{\infty}(y) = \lambda_x u_{\infty}(x + 1) + \mu_x u_{\infty}(x - 1) + (1 - \lambda_x - \mu_x) u_{\infty}(x)$$

En convenant pour le cas x = 1 que $u_{\infty}(0) = 0$.

On en déduit que $\lambda_x(u_\infty(x+1)-u_\infty(x))-\mu_x(u_\infty(x)-u_\infty(x-1))=0$ puis, comme $\lambda_x\neq 0$

$$u_{\infty}(x+1) - u_{\infty}(x) = \frac{\mu_x}{\lambda_x} (u_{\infty}(x) - u_{\infty}(x-1))$$

Montrons maintenant par récurrence que pour tout $x \in \mathbb{N}^*$

$$u(x) = u(1) \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i}$$

- Initialisation. Pour x = 1, la somme du terme de droite se réduit au cas i = 0 qui vaut 1 car c'est un produit vide.
- Hérédité. On suppose la propriété vraie au rang $x \ge 1$. On a alors en utilisant la formule ci-dessus,

$$u_{\infty}(x+1) = u_{\infty}(x) + \frac{\mu_x}{\lambda_x} (u_{\infty}(x) - u_{\infty}(x-1))$$

$$= u_{\infty}(1) \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} + u_{\infty}(1) \frac{\mu_x}{\lambda_x} \left(\sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} - \sum_{i=0}^{x-2} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} \right)$$

$$= u_{\infty}(1) \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} + u_{\infty}(1) \frac{\mu_x}{\lambda_x} \left(\frac{\mu_1 \cdots \mu_{x-1}}{\lambda_1 \cdots \lambda_{x-1}} \right)$$

$$= u_{\infty}(1) \sum_{i=0}^{x} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i}$$

La propriété est bien vérifiée par récurrence.

- 12) a) Supposons par l'absurde que $u_{\infty}(1) > 0$. Alors, comme $A = +\infty$, il existe $x \in \mathbb{N}^*$ tel que $u_{\infty}(1) \sum_{i=0}^x \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i} > 1$. C'est absurde car u_{∞} est une fonction à valeurs dans [0,1]. On en déduit que $u_{\infty}(1) = 0$ et donc $u_{\infty} = \tilde{0}$.
 - b) On utilise le système complet d'événements $(X_0 = x)_{x \in \mathbb{N}}$. La formule des probabilités totales donne que

$$\mathbf{P}(U_{\infty}) = \sum_{x \in \mathbb{N}} \mathbf{P}(X_0 = x) P_{(X_0 = x)}(U_{\infty}) = \sum_{x \in \mathbb{N}} \mathbf{P}(X_0 = x) u_{\infty}(x) = 0$$

c) On vient de montrer que $\mathbf{P}(\bigcap_{n\geqslant 0}(X_n\in\mathbb{N}^*))=0$. La chaine de Markov étant homogène, pour tout entier $N\in\mathbb{N}$, la suite $(X_n)_{n\geqslant N}$ est aussi une chaine de Markov homogène ayant la même matrice de transition. On en déduit que $\mathbf{P}(\bigcap_{n\geqslant N}(X_n\in\mathbb{N}^*))=0$. Une réunion dénombrable d'événements négligeables est négligeable donc

$$\mathbf{P}\left(\bigcup_{N\in\mathbb{N}}\bigcap_{n\geqslant N}(X_n\in\mathbb{N}^*)\right)=0$$

En passant au complémentaire $\mathbf{P}\left(\bigcap_{N\in\mathbb{N}}\bigcup_{n\geqslant N}(X_n=0)\right)=1.$

13) On suppose que $A < +\infty$. La fonction u_{∞} est à valeurs dans [0,1] donc, pour tout $x \in \mathbb{N}$,

$$u_{\infty}(1)\sum_{i=0}^{x-1}\frac{\mu_1\cdots\mu_i}{\lambda_1\cdots\lambda_i}\leqslant 1$$

En passant à la limite quand $x \to +\infty$, $u_{\infty}(1) \leqslant \frac{1}{A}$.

Réciproquement, on considère la fonction v définie sur \mathbb{N} par

$$v: x \mapsto \frac{1}{A} \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i}$$

Elle est à valeurs dans [0,1] et en remontant les calculs de la question 11) elle vérifie $S_+ \odot v = v$. D'après la question 9), $v \leqslant u_{\infty}$. En particulier $u_{\infty}(1) \geqslant v(1) = \frac{1}{A}$.

On en déduit que $u_{\infty}(1) = \frac{1}{A}$ et donc que pour tout $x \in \mathbb{N}$,

$$u_{\infty}(x) = \frac{1}{A} \sum_{i=0}^{x-1} \frac{\mu_1 \cdots \mu_i}{\lambda_1 \cdots \lambda_i}$$

14) a) On suppose qu'il existe π_{∞} telle que pour tout $x \in \mathbb{N}$, $\pi_{\infty}(x) = \lim_{n \to +\infty} \pi_n(x)$.

C'est-à-dire $\pi_{n+1}(x) = S(x-1,x)\pi_n(x-1) + S(x,x)\pi_n(x) + S(x+1,x)\pi_n(x+1)$.

En faisant tendre vers $+\infty$ on obtient que $\pi_{\infty}(x) = S(x-1,x)\pi_{\infty}(x-1) + S(x,x)\pi_{\infty}(x) + S(x+1,x)\pi_{\infty}(x+1)$. On a donc $\pi_{\infty} = \pi_{\infty} \cdot S$.

Pour $x \ge 1$ on obtient

$$\pi_{\infty}(x) = \lambda_{x-1}\pi_{\infty}(x-1) + (1 - \lambda_x - \mu_x)\pi_{\infty}(x) + \mu_{x+1}\pi_{\infty}(x+1)$$

Cela peut s'écrire

$$\pi_{\infty}(x+1) = \frac{1}{\mu_{x+1}} \left((\lambda_x + \mu_x) \pi_{\infty}(x) - \lambda_{x-1} \pi_{\infty}(x-1) \right)$$

Ce résultat est encore vrai pour x=0 si on convient que $\lambda_{-1}=0$.

On démontre alors par récurrence comme à la question 11) que nécessairement pour tout x > 0,

$$\pi_{\infty}(x) = \frac{\lambda_0 \cdots \lambda_{x-1}}{\mu_1 \cdots \mu_x} \pi_{\infty}(0)$$

Comme π_{∞} est une probabilité, on doit avoir

$$\sum_{i=0}^{+\infty} \frac{\lambda_0 \cdots \lambda_{i-1}}{\mu_1 \cdots \mu_i} < +\infty$$

Dans ce cas,

$$\pi_{\infty}: x \mapsto \frac{1}{\sum_{i=0}^{+\infty} \frac{\lambda_0 \cdots \lambda_{i-1}}{\mu_1 \cdots \mu_i}} \frac{\lambda_0 \cdots \lambda_{x-1}}{\mu_1 \cdots \mu_x}$$

b) Avec nos hypothèses, pour tout $i \geqslant 0$, $\frac{\lambda_0 \cdots \lambda_{i-1}}{\mu_1 \cdots \mu_i} = \left(\frac{p}{q}\right)^i$. La série de terme général $\sum_{i \geqslant 0} \left(\frac{p}{q}\right)^i$ converge car p < q et

$$\sum_{i=0}^{\infty} \left(\frac{p}{q}\right)^i = \frac{1}{1 - \frac{p}{q}} = \frac{q}{q - p}$$

On a alors

$$\pi_{\infty}(x) = \frac{q}{q-p} \left(\frac{p}{q}\right)^x$$