Soit $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n+n^3x^2}$ définie sur \mathbb{R}_+^* .

1. Montrer que f est continue

Corrigé

On pose $f_n = x \mapsto \frac{1}{n + n^3 x^2}$ qui est continue sur \mathbb{R}_+^* . Soit a > 0, la fonction f_n est positive et décroissante sur $K = [a, +\infty[$ donc $||f_n||_{\infty,K} = f_n(a)$. Comme $f_n(a) \sim \frac{1}{n^3 a^2}$, la série $\sum \|f_n\|_{\infty,K}$ converge. De ce fait, la série de fonctions $\sum f_n$ converge normalement donc uniformément sur $[a, +\infty[$. Ceci étant vrai pour tout a > 0, la fonction f est continue sur \mathbf{R}_{\perp}^{*} .

2. Calculer $\lim f$.

Déterminons $\lim f$. On a montré à la question précédente que la série $\sum f_n$ converge uniformément sur $[1, +\infty[$ qui est un voisinage de $+\infty$. De plus, pour tout entier n non nul, $\lim_{x\to +\infty} f_n(x) = 0$. On en déduit par le théorème de double limite que $\lim_{x \to +\infty} f(x) = \sum_{n=1}^{+\infty} 0 = 0$.

3. Calculer $\lim_{0^+} f$.

La fonction f est décroissante sur \mathbf{R}_+^* comme somme de fonctions décroissantes. On en déduit que $\lim_{\ell \to \infty} f$ existe dans R. Notons ℓ cette limite. Pour tout entier N et tout $x \in \mathbb{R}_+^*$, on remarque que

$$f(x) = \sum_{n=1}^{+\infty} f_n(x) = \sum_{n=1}^{N} f_n(x) + \sum_{n=N+1}^{+\infty} f_n(x) \geqslant \sum_{n=1}^{N} f_n(x).$$

En passant à la limite quand $x \to 0^+$,

$$\ell \geqslant \sum_{n=1}^{N} \frac{1}{n}.$$

Il suffit alors de faire tendre N vers $+\infty$ pour vérifier que $\lim_{x\to a} f(x) = +\infty$.

4. La fonction f est-elle de classe \mathscr{C}^1 sur \mathbf{R}_+^* .

Corrigé

Pour tout entier $n \ge 1$, la fonction f_n est de classe \mathscr{C}^1 sur \mathbf{R}_+^* et $f_n': x \mapsto -\frac{2n^3x}{(n+n^3x^2)^2}$. Soit K = [a,b] un segment de \mathbf{R}_+^* , pour $x \in K$,

$$|f'_n(x)| \le \frac{2n^3b}{(n+n^3a)^2} \le \frac{C}{n^3}$$
 où $C = \frac{2b}{a^2}$

On a donc $||f_n'||_{\infty,K} \leq \frac{C}{n^3}$ et donc la série $\sum ||f_n'||_{\infty,K}$ converge.

Cela montre que la série $\sum f'_n$ converge normalement donc uniformément sur tout segment $K \subset \mathbb{R}_+^*$. La fonction f est donc de classe \mathscr{C}^1 sur \mathbb{R}_+^* .