
MP2 Étude des rotations dans R3 2025 – 2026

Rappelons le théorème de réductions des isométries vectorielles d’un espace euclidien

Soit 𝑓 une isométrie vectorielle de 𝐸. Il existe une base orthonorméeB de 𝐸 tel que la matrice de 𝑓 dans
la base B soit diagonale par blocs avec des blocs de la forme

𝑅𝜃 =

(
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

)
∈ 𝑆𝑂2(R); (1) ∈ 𝑂1(R); (−1) ∈ 𝑂1(R) .

C’est-à-dire, en regroupant les blocs,

MatB (𝑓 ) =

©­­­­­­«

𝑅𝜃1
. . .

𝑅𝜃𝑟
𝐼𝑝

−𝐼𝑞

ª®®®®®®¬

Théorème (Réduction des isométries - Version endomorphismes)

1-Généralités
On va appliquer ce qui précède pour 𝑛 = 3. Par la suite 𝐸 désigne un espace euclidien orienté de dimension 3.

On va essayer de décrire les éléments de 𝑆𝑂 (𝐸) et de 𝑆𝑂3(R).

Soit 𝐴 ∈ 𝑆𝑂3(R). Comme det𝐴 = 1, elle est semblable a une matrice de la forme

©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬

Proposition

Démonstration : Il suffit d’appliquer la réduction des isométries.

— S’il n’y a que des blocs de taille 1, on est de la forme voulue en posant 𝜃 = 0 ou 𝜃 = 𝜋 .

— Sinon, on a un bloc de taille 2 et un bloc de taille 1. Le bloc de taille 1 étant (1) car det(𝑢) = 1.

□



Soit𝑤 un vecteur non nul de 𝐸 et 𝜃 un réel. On appelle rotation d’axe autour de𝑤 et d’angle 𝜃 , l’isométrie
vectorielle laissant stable 𝐹 = Vect(𝑤) et tel que 𝑓 la restriction de 𝑓 à 𝐻 = 𝐹⊥ soit la rotation d’angle 𝜃 .
Si B = (𝑢, 𝑣,𝑤 ′) est une base orthonormée directe avec𝑤 ′ = 𝑤/∥𝑤 ∥, la matrice de 𝑓 dans la base B est

MatB (𝑓 ) = ©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬

Définition

𝑦

𝑧

𝑥

Remarques :
1. La droite vectorielle 𝐹 s’appelle l’axe de 𝑓 .

2. Si l’angle vaut 𝜋 et donc la matrice est ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬, on dit que c’est un demi-tour.

3. La plupart du temps on prendra𝑤 unitaire.

Pour définir proprement la rotation d’angle 𝜃 dans le plan𝐻 = 𝐹⊥, il faut orienter ce plan. L’orientation est donnée
par le choix du vecteur normal.
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Soit 𝑤 un vecteur unitaire de 𝐸. Il existe une unique orientation du plan 𝐻 = Vect(𝑤)⊥ tel que pour
toute base orthonormée directe (𝑢, 𝑣) de 𝐻 , la base (𝑢, 𝑣,𝑤) soit directe dans 𝐸.

Proposition

𝐻
+

𝜔

𝐻
+

𝜔

Remarques :
1. On dit alors que 𝐻 est orienté par le vecteur𝑤 . On peut d’ailleurs procéder dans l’autre sens. Si on se donne

un plan 𝐻 , pour l’orienter, il suffit de choisir un des deux vecteur unitaires de 𝐻⊥.

2. Il faut faire attention que si on change𝑤 en −𝑤 la rotation change car le plan𝐻 est alors orienté dans l’autre
sens.

On voit donc que dans les isométries vectorielles de l’espace :

• il y a les rotations (qui sont les éléments de 𝑆𝑂 (𝐸))
• il y a aussi les réflexions (symétrie orthogonale par rapport à un plan) qui sont dans𝑂 (𝐸) \𝑆𝑂 (𝐸).
• contrairement au cas du plan, il y en a d’autres. Par exemple l’application𝑢 = −id𝐸 est un élément

de 𝑂 (𝐸) mais pas de 𝑆𝑂 (𝐸) car det(𝑢) = (−1)3 = −1. Mais ce n’est pas une réflexion car aucun
vecteur n’est invariant.
De fait, c’est la composée du demi-tour et d’une reflexion car :

©­«
−1 0 0
0 −1 0
0 0 −1

ª®¬ = ©­«
−1 0 0
0 −1 0
0 0 1

ª®¬ × ©­«
1 0 0
0 1 0
0 0 −1

ª®¬

ATTENTION

2 - Méthodes de calculs
Commençons par une capture d’écran du programme officiel

Voici comment déterminer la matrice d’une rotation dont on connait𝑤 et 𝜃 et inversement, connaissant la matrice
comment retrouver𝑤 et 𝜃 .

— Détermination de la matrice :
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Soit𝑤 un vecteur unitaire,𝜃 un réel et 𝑓 la rotation d’angle𝜃 autour de𝑤 . Pour tout vecteur𝑢 orthogonal
à𝑤 , on a

𝑓 (𝑢) = (cos𝜃 )𝑢 + (sin𝜃 ) (𝑤 ∧ 𝑢).

Proposition

Démonstration : Il suffit de voir que, comme (𝑢,𝑤,𝑢∧𝑤) est une base orthonormée directe alors (𝑢,𝑤∧𝑢,𝑤)
aussi. De ce fait, la matrice de 𝑓 dans cette base est

MatB (𝑓 ) = ©­«
cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

ª®¬
Le résultat en découle en regardant la première colonne. □

Soit 𝑤 le vecteur 𝑤 = (1, 2, 0). On cherche la matrice dans la base canonique de R3 de la rotation autour de
𝑤 et d’angle 𝜃 . Pour tout vecteur 𝑢 = (𝑥,𝑦, 𝑧) on peut le décomposer comme somme d’un vecteur colinéaire
à𝑤 et d’un vecteur qui lui est orthogonal (car 𝐹 et 𝐹⊥ sont en somme directe si 𝐹 = Vect(𝑤)). On a

𝑢 =
𝑥 + 2𝑦

5
𝑤 + 1

5
(4𝑥 − 2𝑦,−2𝑥 − 3𝑦, 5𝑧) .

Maintenant𝑤 ∧ 1
5
(4𝑥 − 2𝑦,−2𝑥 − 3𝑦, 5𝑧) = 1

5
(10𝑧,−5𝑧,−10𝑥 + 𝑦). On a donc

𝑓 (𝑢) = 𝑥 + 2𝑦

5
(1, 2, 0) + cos𝜃

5
(4𝑥 − 2𝑦,−2𝑥 − 3𝑦, 5𝑧) + sin𝜃

5
(10𝑧,−5𝑧,−10𝑥 + 𝑦) .

On peut alors en déduire la matrice …

— Détermination de l’axe et de l’angle : A l’inverse soit 𝑀 =
1
9
©­«

8 1 −4
−4 4 −7
1 8 4

ª®¬. On vérifie que 𝑀 est bien

un matrice orthogonale et que son déterminant vaut 1. L’endomorphisme 𝑓 canoniquement associé est donc
une rotation de R3.
Pour déterminer l’axe il suffit de chercher les invariant c’est-à-dire le noyau de 𝑓 − id. On trouve 𝑤 =
1

√
11

(3,−1,−1) en le prenant normé.

Maintenant on prend un vecteur orthogonal à𝑤 et normé. On prend 𝑢 =
1

√
10

(1, 3, 0). On a

cos𝜃 = (𝑢, 𝑓 (𝑢)) = 7
18

et sin𝜃 = (𝑓 (𝑢),𝑤 ∧ 𝑢) = Det(𝑤,𝑢, 𝑓 (𝑢)) = 5
√
11

18
.

On peut aussi remarquer que tr(𝑓 ) = 1 + 2 cos𝜃 . On retrouve bien cos𝜃 =
tr(𝑓 ) − 1

2
=

7
18

.

On peut alors déterminer le signe de 𝜃 en remarquant que sin𝜃 est du signe de [𝑢, 𝑓 (𝑢),𝑤] pour𝑢 ∉ Vect(𝑤).
En effet, en posant 𝑢 = 𝛼 + 𝑘𝑤 on a

[𝛼 + 𝑘𝑤, 𝑓 (𝛼) + 𝑘𝑤,𝑤] = [𝛼, 𝑓 (𝛼),𝑤] = sin𝜃 [𝛼,𝑤 ∧ 𝛼,𝑤] .

Exercice : Soit 𝐴 =
1
4

©­­«
3 1

√
6

1 3 −
√
6

−
√
6

√
6 2

ª®®¬. Justifier que 𝐴 ∈ 𝑆𝑂 (3,R). Déterminer son axe et son angle.
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