MP2 Etude des rotations dans R3 2025 — 2026

Rappelons le théoréme de réductions des isométries vectorielles d’un espace euclidien

—‘ Théoréme (Réduction des isométries - Version endomorphismes) }

Soit f une isométrie vectorielle de E. Il existe une base orthonormée % de E tel que la matrice de f dans
la base # soit diagonale par blocs avec des blocs de la forme
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C’est-a-dire, en regroupant les blocs,

1

Mats(f) = TR

1-Généralités
On va appliquer ce qui précéde pour n = 3. Par la suite E désigne un espace euclidien orienté de dimension 3.

On va essayer de décrire les éléments de SO(E) et de SO3(R).

Proposition

Soit A € SO5;(R). Comme det A = 1, elle est semblable a une matrice de la forme

cosf —sinf 0
sin@ cosf 0
0 0 1

Démonstration : Il suffit d’appliquer la réduction des isométries.
— S’iln’y a que des blocs de taille 1, on est de la forme voulue en posant § = 0 ou 0 = .

— Sinon, on a un bloc de taille 2 et un bloc de taille 1. Le bloc de taille 1 étant (1) car det(u) = 1.



Soit w un vecteur non nul de E et 0 un réel. On appelle rotation d’axe autour de w et d’angle 0, I’isométrie
vectorielle laissant stable F = Vect(w) et tel que f la restriction de f a H = F* soit la rotation d’angle 6.
Si # = (u,v,w’) est une base orthonormée directe avec w’ = w/||w||, la matrice de f dans la base % est

cos —sinf 0
Matp(f) =| sinf cosf 0

0 0 1
z
)
X
Remarques :

1. La droite vectorielle F s’appelle I'axe de f.

-1 0 O
2. Silangle vaut 7 et donc la matriceest| 0 —1 0 |, on dit que c’est un demi-tour.

0 0 1

3. La plupart du temps on prendra w unitaire.

Pour définir proprement la rotation d’angle 6 dans le plan H = F*, il faut orienter ce plan. L’orientation est donnée
par le choix du vecteur normal.
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—4 Proposition

Soit w un vecteur unitaire de E. Il existe une unique orientation du plan H = Vect(w)* tel que pour
toute base orthonormée directe (u,v) de H, la base (u, v, w) soit directe dans E.

Remarques :

1. On dit alors que H est orienté par le vecteur w. On peut d’ailleurs procéder dans I’autre sens. Si on se donne
un plan H, pour l'orienter, il suffit de choisir un des deux vecteur unitaires de H.

2. 1l faut faire attention que si on change w en —w la rotation change car le plan H est alors orienté dans I’autre
sens.

— ATTENTION |

On voit donc que dans les isométries vectorielles de ’espace :
o il y a les rotations (qui sont les éléments de SO(E))
o il y a aussi les réflexions (symétrie orthogonale par rapport a un plan) qui sont dans O(E) \ SO(E).

e contrairement au cas du plan, il y en a d’autres. Par exemple ’application u = —idg est un élément
de O(E) mais pas de SO(E) car det(u) = (—1)°> = —1. Mais ce n’est pas une réflexion car aucun
vecteur n’est invariant.

De fait, c’est la composée du demi-tour et d’une reflexion car :

-1 0 0 -1 0 0 1 0 0
0 -1 0 = 0 -1 0 x| 0 1 0
0 0o -1 0 0 1 0 0 -1
2 - Méthodes de calculs
Commencons par une capture d’écran du programme officiel
CONTENUS CAPACITES & COMMENTAIRES
Cas particulier : réduction d'une isométrie vectorielle di- La forme réduite justifie la terminologie « rotation ».
recte d’'un espace euclidien de dimension 3. La pratique du calcul des éléments géométriques dun

élément de SO3(R) nest pas un attendu du programme.
Voici comment déterminer la matrice d’une rotation dont on connait w et 8 et inversement, connaissant la matrice

comment retrouver w et 0.

— Détermination de la matrice :
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—4 Proposition

Soit w un vecteur unitaire, 6 un réel et f la rotation d’angle 6 autour de w. Pour tout vecteur u orthogonal
aw,ona

f(u) = (cosB)u + (sinB)(w A u).

Démonstration : Il suffit de voir que, comme (u, w, uAw) est une base orthonormée directe alors (u, wAu, w)
aussi. De ce fait, la matrice de f dans cette base est

cosf —sinf 0
Matg(f) =| sinf cosf 0
0 0 1

Le résultat en découle en regardant la premiére colonne. O

Soit w le vecteur w = (1,2,0). On cherche la matrice dans la base canonique de R? de la rotation autour de
w et d’angle 0. Pour tout vecteur u = (x, y, z) on peut le décomposer comme somme d’un vecteur colinéaire
a w et d’un vecteur qui lui est orthogonal (car F et F* sont en somme directe si F = Vect(w)). On a

_x+2y

1
u w+ g(4x -2y, —2x — 3y, 52).

1 1
Maintenant w A §(4x - 2y,-2x —3y,52) = g(lOz, —5z,—10x + y). On a donc

x+2 cos @ sin 0
fu) = c y(l, 2,0) + T(4x -2y, —2x — 3y,52) + T(lOz, -5z, -10x + y).
On peut alors en déduire la matrice ...
8§ 1 —4
— Détermination de I'axe et de I'angle : A linverse soit M = —| —4 4 =7 |. On vérifie que M est bien
1 8 4

un matrice orthogonale et que son déterminant vaut 1. L’endomorphisme f canoniquement associé est donc

une rotation de R®.

Pour déterminer l'axe il suffit de chercher les invariant c’est-a-dire le noyau de f — id. On trouve w =
1

V11

1
Maintenant on prend un vecteur orthogonal & w et normé. On prend u = \/—_ (1,3,0).0Ona
10

(3,—-1,—1) en le prenant normé.

5v11

cosf = (u, f(u) = % et sinf = (f(u),w A u) = Det(w,u, f(u)) = 5

tr(f)-1 7

2 18
On peut alors déterminer le signe de 6 en remarquant que sin 6 est du signe de [u, f(u), w] pour u ¢ Vect(w).
En effet, en posantu = @ + kw on a

On peut aussi remarquer que tr(f) = 1+ 2 cos 6. On retrouve bien cos 8 =
[a+kw, f(a) +kw,w] = [a, f(a),w] =sinB[a,w A a, w].

Vo

1
3 -6 | Justifier que A € SO(3,R). Déterminer son axe et son angle.

3
1
-V6 V6 2

. . 1
Exercice : Soit A = 2
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