
MP2 Théorème de Weierstrass - Corrigé 2025 – 2026

Partie I - Fonctions sur [0, 1]
1. Soit 𝑥 ∈ [0, 1] et 𝑛 ∈ N. D’après, la formule du binôme de Newton.

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 = (𝑥 + (1 − 𝑥))𝑛 = 1

2. Soit 𝑥 ∈ [0, 1] et 𝑛 ∈ N∗. Pour tout 𝑦 ∈ R, la formule du binôme donne

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑘𝑦𝑛−𝑘 = (𝑥 + 𝑦)𝑛

En dérivant (par rapport à 𝑥 ) on a

𝑛∑
𝑘=1

(
𝑛

𝑘

)
𝑘𝑥𝑘−1𝑦𝑛−𝑘 = 𝑛(𝑥 + 𝑦)𝑛−1

En multipliant par 𝑥 et en prenant 𝑦 = 1 − 𝑥 on obtient bien

𝑛∑
𝑘=0

𝑘

(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 =

𝑛∑
𝑘=1

𝑘

(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 = 𝑛𝑥

De plus la formule est aussi vraie pour 𝑛 = 0.

3. La encore la formule est clairement vraie pour 𝑛 = 0 et 𝑛 = 1. Pour le cas général, on repart de la
formule obtenue au début de la question précédente. En dérivant deux fois on a

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑘 (𝑘 − 1)𝑥𝑘−2𝑦𝑛−𝑘 = 𝑛(𝑛 − 1)(𝑥 + 𝑦)𝑛−2

et donc, en multipliant par 𝑥2 et en posant 𝑦 = 1 − 𝑥 ,

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑘 (𝑘 − 1)𝑥𝑘 (1 − 𝑦)𝑛−𝑘 =

𝑛∑
𝑘=2

(
𝑛

𝑘

)
𝑘 (𝑘 − 1)𝑥𝑘 (1 − 𝑦)𝑛−𝑘 = 𝑛(𝑛 − 1)𝑥2

En écrivant 𝑘2 = 𝑘 (𝑘 − 1) + 𝑘 et en utilisant la question précédente, on obtient

𝑛∑
𝑘=2

𝑘2
(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 = 𝑛𝑥 + 𝑛(𝑛 − 1)𝑥2

4. Soit 𝑥 ∈ [0, 1] et 𝑛 ∈ N

𝑛∑
𝑘=0

(𝑘 − 𝑛𝑥)2
(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 =

𝑛∑
𝑘=0

𝑘2
(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 − 2𝑛𝑥

𝑛∑
𝑘=0

𝑘

(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 + 𝑛2𝑥2

= 𝑛𝑥 + 𝑛(𝑛 − 1)𝑥2 − 2(𝑛𝑥)2 + 𝑛2𝑥2

= 𝑛𝑥 (𝑥 − 1)

On sait que la fonction 𝑥 ↦→ 𝑥 (1−𝑥) atteint son maximum en 𝑥 = 1
2 . On peut donc poser𝐶 = 1

4 et on a

𝑛∑
𝑘=0

(𝑘 − 𝑛𝑥)2
(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽ 𝑛

4
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5. La fonction 𝑓 est continue sur le segment [0, 1] (qui est donc compact). D’après le théorème de Heine,
elle est uniformément continue donc, pour tout 𝜀 > 0, il existe 𝛼 > 0 tel que

∀(𝑥,𝑦) ∈ [0, 1]2, |𝑥 − 𝑦 | ⩽ 𝛼 ⇒ |𝑓 (𝑥) − 𝑓 (𝑦) | ⩽ 𝜀.

6. Soit 𝑥 ∈ [0, 1] et 𝑛 ∈ N,

|𝐵𝑛 (𝑥) − 𝑓 (𝑥) | =

������©­«
∑

𝑘∈[[0,𝑛]]

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 𝑓

(
𝑘

𝑛

)ª®¬ − 𝑓 (𝑥)

������
=

������ ∑
𝑘∈[[0,𝑛]]

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

(
𝑓

(
𝑘

𝑛

)
− 𝑓 (𝑥)

)������ d’après 1)
⩽

∑
𝑘∈𝑋

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

����𝑓 (
𝑘

𝑛

)
− 𝑓 (𝑥)

���� + ∑
𝑘∈𝑌

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

����𝑓 (
𝑘

𝑛

)
− 𝑓 (𝑥)

����
⩽ 𝜀

∑
𝑘∈𝑋

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 +

∑
𝑘∈𝑌

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

(����𝑓 (
𝑘

𝑛

)���� + |𝑓 (𝑥) |
)

⩽ 𝜀 + 2∥ 𝑓 ∥∞
∑
𝑘∈𝑌

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

La dernière ligne vient du fait que∑
𝑘∈𝑋

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽

∑
𝑘∈[[0,𝑛]]

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 = 1

7. On remarque alors que∑
𝑘∈𝑌

(𝑘 − 𝑛𝑥)2
(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽

∑
𝑘∈[[0𝑛]]

(𝑘 − 𝑛𝑥)2
(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽ 𝑛

4

Donc, par définition de 𝑌 , si 𝑘 ∈ 𝑌 ,
(𝑘 − 𝑛𝑥)2
𝑛2𝛼2 ⩾ 1 d’où

∑
𝑘∈𝑌

(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽ 1

𝑛2𝛼2

∑
𝑘∈𝑌

(𝑘 − 𝑛𝑥)2
(
𝑘

𝑛

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘 ⩽ 1

4𝛼𝑛

Il existe donc un entier 𝑁 tel que, pour 𝑛 ⩾ 𝑁 , 1
4𝛼𝑛 ⩽ 𝜀 et donc |𝐵𝑛 (𝑥) − 𝑓 (𝑥) | ⩽ 2𝜀. Ceci étant vrai

pour tout 𝑥 ∈ [0, 1],
∥𝐵𝑛 − 𝑓 ∥∞ ⩽ 𝜀

On vient donc de montrer que (𝐵𝑛)
∥.∥∞−→ 𝑓 .
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Partie II - Fonctions sur [0, 1] - avec probabilités
8. Les variables 𝑋𝑘 sont indépendantes donc 𝑆𝑛 ↩→ B(𝑛, 𝑥). Par transfert on a donc

E(𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥)) =

(
𝑛∑

𝑘=0

𝑓 (𝑘/𝑛)P(𝑆𝑛 = 𝑘)
)
− 𝑓 (𝑥)

=

(
𝑛∑

𝑘=0

𝑓 (𝑘/𝑛)
(
𝑛

𝑘

)
𝑥𝑘 (1 − 𝑥)𝑛−𝑘

)
− 𝑓 (𝑥)

= 𝐵𝑛 (𝑥) − 𝑓 (𝑥)

9. Notons 𝑌 = 1( |𝑆𝑛−𝑛𝑥 |⩽𝑛𝛼) |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) |. On voit que 0 ⩽ 𝑌 ⩽ 𝜀. En effet pour tout 𝜔 ∈ Ω,

— Si |𝑆𝑛 (𝜔) − 𝑛𝑥 | ⩽ 𝑛𝛼 alors
���𝑆𝑛 (𝜔)𝑛 − 𝑥

��� ⩽ 𝛼 et donc

𝑌 (𝜔) = |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) | (𝜔) ⩽ 𝜀

— Si |𝑆𝑛 (𝜔) − 𝑛𝑥 | > 𝑛𝛼 , 𝑌 (𝜔) = 0 ⩽ 𝜀.
Par croissance de l’espérance,

E
(
1( |𝑆𝑛−𝑛𝑥 |⩽𝑛𝛼) |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) |

)
⩽ E(𝜀) = 𝜀

10. On pose 𝑍 = 1(|𝑆𝑛−𝑛𝑥 |>𝑛𝛼) |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) | alors 0 ⩽ 𝑍 ⩽ 2∥ 𝑓 ∥∞1( |𝑆𝑛−𝑛𝑥 |>𝑛𝛼) . Là encore, par croissance
de l’espérance,

E(1( |𝑆𝑛−𝑛𝑥 |>𝑛𝛼) |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) |) ⩽ 2∥ 𝑓 ∥∞E(1(|𝑆𝑛−𝑛𝑥 |>𝑛𝛼)) = 2∥ 𝑓 ∥∞P( |𝑆𝑛 − 𝑛𝑥 | > 𝑛𝛼)

11. On voit que

|𝐵𝑛 (𝑥) − 𝑓 (𝑥) | = |E(𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥)) | ⩽ E( |𝑓 (𝑆𝑛/𝑛) − 𝑓 (𝑥) |) ⩽ 𝜀 + 2∥ 𝑓 ∥∞P( |𝑆𝑛 − 𝑛𝑥 | > 𝑛𝛼)

Or, E(𝑆𝑛) = 𝑛𝑥 donc, en utilisant l’inégalité de Bienaymé-Tchebychev,

P(|𝑆𝑛 − 𝑛𝑥 | > 𝑛𝛼) ⩽ V(𝑆𝑛)
𝑛2𝛼2 =

𝑛𝑥 (1 − 𝑥)
𝑛2𝛼2 ⩽

1
4𝑛𝛼2

car 𝑥 (1 − 𝑥) ⩽ 1
4 .

On en déduit que

|𝐵𝑛 (𝑥) − 𝑓 (𝑥) | ⩽ 𝜀 + ∥ 𝑓 ∥∞
2𝑛𝛼2

12. En procédant comme à la fin de la question 7, on a bien que (𝐵𝑛)
∥ .∥∞−→ 𝑓 .

Partie III - Cas général
13. Soit 𝑓 une fonction continue sur 𝐼 = [𝑎,𝑏]. Soit𝑢 : 𝑡 ↦→ 𝑎+𝑡 (𝑏−𝑎) qui est une fonction continue de [0, 1]

dans [𝑎,𝑏]. La fonction 𝑔 = 𝑓 ◦𝑢 est continue sur [0, 1]. Il existe donc (𝑃𝑛) qui converge uniformément

vers 𝑔 sur [0, 1]. Soit 𝑣 = 𝑢−1 : 𝑥 ↦→ 1
𝑏 − 𝑎

(𝑥 − 𝑎) qui est un polynôme. On pose 𝑄𝑛 : 𝑥 ↦→ 𝑃𝑛 (𝑣 (𝑥)) qui
est donc une suite de fonctions polynômiales. Pour tout 𝑥 ∈ [𝑎, 𝑏],

|𝑓 (𝑥) −𝑄𝑛 (𝑥) | = |𝑓 (𝑢 (𝑣 (𝑥))) − 𝑃𝑛 (𝑣 (𝑥)) | = |𝑔(𝑣 (𝑥)) − 𝑃𝑛 (𝑣 (𝑥)) | ⩽ ∥𝑔 − 𝑃𝑛∥∞,[0,1]

On en déduit que
∥ 𝑓 −𝑄𝑛∥∞,[𝑎,𝑏] ⩽ ∥𝑔 − 𝑃𝑛∥∞,[0,1] → 0

Finalement la suite (𝑄𝑛) converge uniformément vers 𝑔 sur [𝑎, 𝑏].
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