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Partie I - Fonctions 𝐿 et 𝑃

1. Soit 𝑧 ∈ 𝐷. Pour 𝑛 ⩾ 1,
⃒⃒
𝑧𝑛

𝑛

⃒⃒
= 𝑜(|𝑧|𝑛). Or

∑︀
𝑛⩾0

|𝑧|𝑛 est une série géométrique absolument convergente

car |𝑧| ∈]− 1, 1[. On en déduit que
∑︀
𝑛⩾1

𝑧𝑛

𝑛
est absolument convergente donc convergente.

Quand 𝑧 ∈]− 1, 1[, on a
∞∑︀
𝑛=1

𝑧𝑛

𝑛
= − ln(1− 𝑧) .

2. Soit 𝑧 ∈ 𝐷. On pose

Φ : 𝑡 ↦→ 𝐿(𝑡𝑧) =
∞∑︁
𝑛=1

𝑧𝑛

𝑛
𝑡𝑛

La fonction Φ est donc la somme d’une série entière dont le rayon de convergence est supérieur ou
égal à 1

|𝑧| > 1 car pour 𝑡 < 1
|𝑧| , |𝑧𝑡| < 1 et donc la série

∑︀
𝑛⩾1

𝑧𝑛

𝑛
𝑡𝑛 est absolument convergente.

La fonction Φ est donc dérivable car C ∞ sur [−1, 1] ⊂]− 1
|𝑧| ,

1
|𝑧| [. Par dérivation terme à terme, pour

𝑡 ∈ [−1, 1],

Φ′(𝑡) =
∞∑︁
𝑛=1

𝑧𝑛𝑡𝑛−1 = 𝑧
∞∑︁
𝑛=0

(𝑧𝑡)𝑛 =
𝑧

1− 𝑡𝑧

3. Soit 𝑧 ∈ 𝐷. La fonction Ψ est dérivable sur [0, 1] car 𝑡 ↦→ (1−𝑡𝑧) et Φ le sont. De plus pour 𝑡 ∈ [0, 1],

Ψ′(𝑡) = −𝑧𝑒𝐿(𝑡𝑧) + (1− 𝑡𝑧) · 𝑧

1− 𝑡𝑧
· 𝑒𝐿(𝑡𝑧) = 0

On en déduit que Ψ est constante sur [0, 1].

En particulier,
(1− 𝑧)𝑒𝐿(𝑧) = Ψ(1) = Ψ(0) = 𝑒𝐿(0) = 𝑒0 = 1

On en déduit que : exp(𝐿(𝑧)) =
1

1− 𝑧
.

4. Soit 𝑧 ∈ 𝐷,

|𝐿(𝑧)| =

⃒⃒⃒⃒
⃒

∞∑︁
𝑛=1

𝑧𝑛

𝑛

⃒⃒⃒⃒
⃒ ⩽

∞∑︁
𝑛=1

|𝑧|𝑛

𝑛
= − ln(1− |𝑧|)

Pour 𝑧 ∈ 𝐷 fixé, |𝑧|𝑛 →
𝑛→∞

0 donc − ln(1−|𝑧|𝑛) ∼ |𝑧|𝑛. On en déduit que |𝐿(𝑧𝑛)| = 𝑂(|𝑧|𝑛). Comme

la série
∑︀
𝑛⩾1

|𝑧|𝑛 converge puisque |𝑧| < 1, la série
∑︀

𝑛⩾1 𝐿(𝑧
𝑛) est absolument convergente donc

convergente.

Dans la suite, on notera, pour 𝑧 dans 𝐷 : 𝑃 (𝑧) := exp

[︃
+∞∑︁
𝑛=1

𝐿 (𝑧𝑛)

]︃
.
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5. Soit 𝑧 ∈ 𝐷. Par continuité de exp,

𝑃 (𝑧) = exp

(︃
lim

𝑁→∞

𝑁∑︁
𝑛=1

𝐿(𝑧𝑛)

)︃

= lim
𝑁→∞

exp

(︃
𝑁∑︁

𝑛=1

𝐿(𝑧𝑛)

)︃

= lim
𝑁→∞

𝑁∏︁
𝑛=1

exp (𝐿(𝑧𝑛))

𝑃 (𝑧) = lim
𝑁→∞

𝑁∏︁
𝑛=1

1

1− 𝑧𝑛

Partie II - Développement de 𝑃 en série entière

Pour (𝑛,𝑁) ∈ N×N*, on note 𝑃𝑛,𝑁 l’ensemble des listes (𝑎1, . . . , 𝑎𝑁) ∈ N𝑁 telles que :
𝑁∑︁
𝑘=1

𝑘𝑎𝑘 = 𝑛.

6. Soit 𝑛 ∈ N.

(𝑛, 0, . . . , 0) ∈ 𝑃𝑛,𝑁 donc 𝑃𝑛,𝑁 est non vide .

Soit (𝑎1, . . . , 𝑎𝑁) ∈ 𝑃𝑛,𝑁 . Alors pour tout 𝑘 ∈ [[1, 𝑁 ]] on a :0 ⩽ 𝑎𝑘 ⩽ 𝑘𝑎𝑘 ⩽
∑︀𝑁

𝑖=1 𝑖𝑎𝑖 = 𝑛 donc 𝑃𝑛,𝑁

est inclus dans [[0, 𝑛]]𝑁 .

On note dans la suite 𝑝𝑛,𝑁 le cardinal de 𝑃𝑛,𝑁 .

7. Soit 𝑛 ∈ N.

Pour tout 𝑁 ⩾ 1 on a :
𝑃𝑛,𝑁 × {0} ⊂ 𝑃𝑛,𝑁+1

d’où
𝑝𝑛,𝑁 × 1 ⩽ 𝑝𝑛,𝑁+1

Donc la suite (𝑝𝑛,𝑁)𝑁⩾1 est croissante .

Pour 𝑁 ⩾ max(𝑛, 1) l’inclusion précédente est une égalité car si (𝑎1, . . . , 𝑎𝑁+1) ∈ 𝑃𝑛,𝑁+1 alors
(𝑁 + 1)𝑎𝑁+1 ⩽ 𝑛 ⩽ 𝑁 < 𝑁 + 1 donc 𝑎𝑁+1 < 1 et ainsi 𝑎𝑁+1 = 0.

Donc 𝑝𝑛,𝑁 .1 = 𝑝𝑛,𝑁+1

Ainsi la suite (𝑝𝑛,𝑁)𝑁⩾1 est constante à partir du rang max(𝑛, 1) .

Dans toute la suite, on notera 𝑝𝑛 la valeur finale de (𝑝𝑛,𝑁)𝑁⩾1.

8. Soit 𝑁 ∈ N*.

∀𝑧 ∈ 𝐷,
1

1− 𝑧𝑁
=

∞∑︁
𝑘=0

𝑧𝑁𝑘 =
+∞∑︁
𝑛=0

𝑎𝑛,𝑁𝑧
𝑛.

avec 𝑎𝑛,𝑁 = 1𝑁 |𝑛 =

{︂
1 si 𝑁 |𝑛
0 sinon

Soit 𝑧 ∈ 𝐷. Montrons par récurrence que pour tout 𝑁 ∈ N*,
𝑁∏︁
𝑘=1

1

1− 𝑧𝑘
=

+∞∑︁
𝑛=0

𝑝𝑛,𝑁𝑧
𝑛.

initialisation : Pour 𝑁 = 1 on a

∀𝑧 ∈ 𝐷,
𝑁∏︁
𝑘=1

1

1− 𝑧𝑘
=

1

1− 𝑧
=

∞∑︁
𝑛=0

𝑧𝑛 =
+∞∑︁
𝑛=0

𝑝𝑛,1𝑧
𝑛
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car 𝑝𝑛,1 = card
(︁
{(𝑛)}

)︁
= 1.

hérédité : soit 𝑁 ∈ N*. Supposons la propriété vraie au rang 𝑁 . Alors pour tout 𝑧 ∈ 𝐷 :

𝑁+1∏︁
𝑘=1

1

1− 𝑧𝑘
=

(︀+∞∑︁
𝑛=0

𝑝𝑛,𝑁𝑧
𝑛
)︀
.
(︀ ∞∑︁
𝑝=0

1𝑁+1|𝑝
)︀

=
∞∑︁
𝑟=0

∑︁
𝑛, 𝑞 ⩾ 0,
𝑛 + 𝑞 = 𝑟

𝑝𝑛,𝑁1𝑁+1|𝑞𝑧
𝑟 par produit de Cauchy de séries entières

de rayon de convergence au moins 1

=
∞∑︁
𝑟=0

∑︁
𝑛, 𝑞 ⩾ 0,
𝑛 + 𝑘(𝑁 + 1) = 𝑟

𝑝𝑛,𝑁𝑧
𝑟

=
∞∑︁
𝑟=0

𝑝𝑟,𝑁+1𝑧
𝑟

car
𝑃𝑟,𝑁+1 =

⨆︁
𝑛, 𝑞 ⩾ 0,
𝑛 + 𝑘(𝑁 + 1) = 𝑟

𝑃𝑛,𝑁 × {𝑘}

Donc la propriété est vraie à tout ordre par récurrence .

9. On fixe ℓ ∈ N et 𝑥 ∈ [0, 1[.

Soit 𝑁 ∈ N*. Comme pour tout, 𝑛, 𝑝𝑛,𝑁 ⩾ 0 et que 𝑥 ⩾ 0, on a

ℓ∑︁
𝑛=0

𝑝𝑛,𝑁𝑥
𝑛 ⩽

∞∑︁
𝑛=0

𝑝𝑛,𝑁𝑥
𝑛 =

𝑁∏︁
𝑘=1

1

1− 𝑥𝑘

En faisant tendre 𝑁 vers +∞ on obtient Ainsi

ℓ∑︁
𝑛=0

𝑝𝑛𝑥
𝑛 ⩽ lim

𝑁→+∞

𝑁∏︁
𝑘=1

1

1− 𝑥𝑘
= 𝑃 (𝑥)

Comme la série
∑︀

𝑛⩾0 𝑝𝑛𝑥
𝑛 est à termes positifs et que la suite de ses sommes partielles est majorée,

cette série converge. Notant 𝑅𝑝 le rayon de la série entière
∑︁
𝑛⩾0

𝑝𝑛𝑧
𝑛 on a donc :

∀𝑥 ∈ [0, 1[ 𝑥 ⩽ 𝑅𝑝

Par passage à la limite quand 𝑥 → 1− (ou en utilisant que 𝑅𝑝 = sup{𝑥 ⩾ 0 𝑡.𝑞.
∑︀

𝑝𝑛𝑥
𝑛 converge})

il vient 1 ⩽ 𝑅𝑝.

Par ailleurs pour tout 𝑛 ∈ N on a 𝑝𝑛 ⩾ 𝑝𝑛,1 = card{(𝑛)} = 1 ⩾ 0 donc 𝑅𝑝 ⩽ 𝑅(1)𝑛⩾0
= 1.

Donc 𝑅𝑝 = 1 .

10. Soit 𝑧 ∈ 𝐷.
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⃒⃒⃒⃒
⃒
+∞∑︁
𝑛=0

𝑝𝑛𝑧
𝑛 −

+∞∑︁
𝑛=0

𝑝𝑛,𝑁𝑧
𝑛

⃒⃒⃒⃒
⃒ ⩽

+∞∑︁
𝑛=0

|𝑝𝑛 − 𝑝𝑛,𝑁 |.|𝑧|𝑛

=
∞∑︁

𝑛=𝑁+1

(𝑝𝑛 − 𝑝𝑛,𝑁)|𝑧|𝑛

⩽
∞∑︁

𝑛=𝑁+1

𝑝𝑛|𝑧|𝑛

car 0 ⩽ 𝑝𝑛,𝑁 ⩽ 𝑝𝑛 avec égalité si 𝑁 ⩾ 𝑛.

Or la série
∑︀

𝑛⩾0 𝑝𝑛𝑧
𝑛 converge absolument car |𝑧| < 𝑅𝑝 = 1. Donc

∑︀∞
𝑛=𝑁 𝑝𝑛|𝑧|𝑛 →

𝑁→∞
0.

Par limite par encadrement,
∑︀+∞

𝑛=0 𝑝𝑛𝑧
𝑛 −

∑︀+∞
𝑛=0 𝑝𝑛,𝑁𝑧

𝑛 →
𝑁→∞

0

Ainsi
∑︀+∞

𝑛=0 𝑝𝑛,𝑁𝑧
𝑛 →

𝑁→∞

∑︀+∞
𝑛=0 𝑝𝑛𝑧

𝑛

Par ailleurs,
+∞∑︁
𝑛=0

𝑝𝑛,𝑁𝑧
𝑛 =

𝑁∏︁
𝑘=1

1

1− 𝑧𝑘
→

𝑁→∞
𝑃 (𝑧)

Donc par unicité de la limite,

𝑃 (𝑧) =
+∞∑︁
𝑛=0

𝑝𝑛𝑧
𝑛

11. Soit 𝑛 ∈ N. Soit 𝑡 > 0 :

∫︁ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃𝑃
(︀
𝑒−𝑡+𝑖𝜃

)︀
𝑑𝜃 =

∫︁ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃

∞∑︁
𝑘=0

𝑝𝑘𝑒
−𝑘𝑡𝑒𝑖𝑘𝜃𝑑𝜃

=

∫︁ 𝜋

−𝜋

∞∑︁
𝑘=0

𝑝𝑘𝑒
−𝑘𝑡𝑒𝑖(𝑘−𝑛)𝜃𝑑𝜃

=
∞∑︁
𝑘=0

𝑝𝑘𝑒
−𝑘𝑡

∫︁ 𝜋

−𝜋

𝑒𝑖(𝑘−𝑛)𝜃𝑑𝜃

par le théorème d’intégration terme à terme, qu’on peut appliquer car
∑︀

𝑘⩾0 |𝑝𝑘|𝑒−𝑘𝑡
∫︀ 𝜋

−𝜋
|𝑒𝑖(𝑘−𝑛)𝜃|𝑑𝜃 =∑︀

𝑘⩾0 |𝑝𝑘|𝑒−𝑘𝑡2𝜋 converge car |𝑒−𝑡| < 1 = 𝑅𝑝.

Or
∫︀ 𝜋

−𝜋
𝑒𝑖(𝑘−𝑛)𝜃𝑑𝜃 =

{︂
2𝜋 si 𝑘 = 𝑛
= 0 sinon

Ainsi ∫︁ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃𝑃
(︀
𝑒−𝑡+𝑖𝜃

)︀
𝑑𝜃 = 2𝜋𝑝𝑛𝑒

−𝑛𝑡
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Partie III - Contrôle de 𝑃

12. Soient 𝑥 ∈ [0, 1[ et 𝜃 ∈ R.

⃒⃒⃒⃒
1− 𝑥

1− 𝑥𝑒𝑖𝜃

⃒⃒⃒⃒
=

⃒⃒
exp(𝐿(𝑥𝑒𝑖𝜃)− 𝐿(𝑥))

⃒⃒
= exp

(︀
𝑅𝑒
(︀
𝐿(𝑥𝑒𝑖𝜃)− 𝐿(𝑥)

)︀)︀
car pour 𝑎, 𝑏 réels, 𝑒𝑎+𝑖𝑏 a pour module 𝑒𝑎

= exp
(︁ ∞∑︁
𝑛=1

𝑅𝑒(𝑥𝑛(𝑒𝑖𝑛𝜃 − 1)/𝑛)
)︁

= exp
(︁ ∞∑︁
𝑛=1

𝑥𝑛

𝑛
(cos(𝑛𝜃)− 1)

)︁
⩽ exp

(︀
𝑥(cos(𝜃)− 1)

)︀
par croissance de exp et car cos(𝑛𝜃)− 1 ⩽ 0 pour tout 𝑛 ⩾ 2 et 𝑥 ⩾ 0.

En multipliant les inégalités obtenues pour (𝑥, 𝜃) ∈ {(𝑥, 𝜃), (𝑥2, 2𝜃), . . . , (𝑥𝑁 , 𝑁𝜃)} et en passant à
la limite quand 𝑁 → ∞ dans les inégalités larges, on obtient par continuité de l’exponentielle :

⃒⃒⃒⃒
⃒𝑃
(︀
𝑥𝑒𝑖𝜃

)︀
𝑃 (𝑥)

⃒⃒⃒⃒
⃒ ⩽ exp

(︃
∞∑︁
𝑛=1

(cos(𝑛𝜃)− 1)𝑥𝑛

)︃

= exp

(︃
∞∑︁
𝑛=1

(cos(𝑛𝜃)− 1)𝑥𝑛

)︃
car cos 0 = 1

= exp

(︃
− 1

1− 𝑥
+Re

(︃
∞∑︁
𝑛=0

𝑥𝑛𝑒𝑖𝑛𝜃)

)︃)︃

= exp

(︂
− 1

1− 𝑥
+Re

(︂
1

1− 𝑥𝑒𝑖𝜃

)︂)︂
13. Soient 𝑥 ∈ [0, 1[ et 𝜃 ∈ R. Montrer que :

1

1− 𝑥
− Re

(︂
1

1− 𝑥𝑒𝑖𝜃

)︂
=

1

1− 𝑥
− Re

(︂
1− 𝑥𝑒−𝑖𝜃

(1− 𝑥𝑒𝑖𝜃)(1− 𝑥𝑒−𝑖𝜃)

)︂
=

1

1− 𝑥
− 1− 𝑥 cos 𝜃

1 + 𝑥2 − 2𝑥 cos 𝜃

=
1 + 𝑥2 − 2𝑥 cos 𝜃 − (1− 𝑥 cos 𝜃 − 𝑥+ 𝑥2 cos 𝜃)

(1− 𝑥)(1 + 𝑥2 − 2𝑥 cos 𝜃)

=
𝑥(𝑥− cos 𝜃 + 1− 𝑥 cos 𝜃)

(1− 𝑥)(1 + 𝑥2 − 2𝑥 cos 𝜃)

⩾
𝑥(− cos 𝜃 + 1)

(1− 𝑥)(1 + 𝑥2 − 2𝑥 cos 𝜃)

car 𝑥− 𝑥 cos 𝜃 = 𝑥(1− cos 𝜃) ⩾ 0 (et 𝑥 et le dénominateur sont positifs)

On vérifie aisément que le dernier facteur du dénominateur est égal à (1− 𝑥)2 + 2𝑥(1− cos 𝜃)
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On a donc par croissance de exp :⃒⃒⃒⃒
⃒𝑃
(︀
𝑥𝑒𝑖𝜃

)︀
𝑃 (𝑥)

⃒⃒⃒⃒
⃒ ⩽ exp(

−𝑥(1− cos 𝜃)

(1− 𝑥)((1− 𝑥)2 + 2𝑥(1− cos 𝜃))

Supposons que 1 > 𝑥 ⩾ 1
2
.

Dans le cas où 𝑥(1− cos(𝜃)) ⩾ (1− 𝑥)2, on a :⃒⃒⃒⃒
⃒𝑃
(︀
𝑥𝑒𝑖𝜃

)︀
𝑃 (𝑥)

⃒⃒⃒⃒
⃒ ⩽ exp

(︂
−𝑥(1− cos 𝜃)

(1− 𝑥)3𝑥(1− cos 𝜃)

)︂
= exp

(︂
−1

3(1− 𝑥)

)︂
et dans le cas contraire on a :⃒⃒⃒⃒

⃒𝑃
(︀
𝑥𝑒𝑖𝜃

)︀
𝑃 (𝑥)

⃒⃒⃒⃒
⃒ ⩽ exp

(︂
−𝑥(1− cos 𝜃)

(1− 𝑥)3(1− 𝑥)2

)︂
⩽ exp

(︂
−(1− cos 𝜃)

6(1− 𝑥)3

)︂

14. La fonction 𝜃 ↦→
{︂

1−cos 𝜃
𝜃2

si 𝜃 ̸= 0
1/2 sinon

est développable en série entière sur R donc continue sur le

segment [−𝜋, 𝜋].

Par conséquent elle atteint sa borne inférieure sur ce segment.

Comme elle est à valeurs strictement positives, son minimum, qu’on note 𝛼, est strictement positif.

Ainsi il existe un réel 𝛼 > 0 tel que :

∀𝜃 ∈ [−𝜋, 𝜋], 1− cos(𝜃) ⩾ 𝛼𝜃2

(l’inégalité est triviale quand 𝜃 = 0)

Lorsque 1
2
⩽ 𝑒−𝑡 < 1, c’est-à-dire quand 0 < 𝑡 < ln 2, et lorsque 𝜃 ∈ [−𝜋, 𝜋], on peut donc majorer⃒⃒⃒

𝑃 (𝑒−𝑡𝑒𝑖𝜃)
𝑃 (𝑒−𝑡)

⃒⃒⃒
par

exp

(︂
−1

3(1− 𝑒−𝑡)

)︂
ou exp

(︂
−𝛼𝜃2

6(1− 𝑒−𝑡)3

)︂
De plus par convexité de la fonction exponentielle, 𝑒−𝑡 ⩾ 1− 𝑡 donc 0 < 1− 𝑒−𝑡 < 𝑡

Ainsi on obtient une des majorations voulues en posant :

𝑡0 = ln 2, 𝛾 = 𝜋−2/3, 𝛽 =
𝛼

6

15. ⃒⃒⃒⃒
⃒
∫︁ 𝜋

−𝜋

𝑒−𝑖𝜋
2𝜃

6𝑡2
𝑃
(︀
𝑒−𝑡𝑒𝑖𝜃

)︀
𝑃 (𝑒−𝑡)

d𝜃

⃒⃒⃒⃒
⃒ ⩽

∫︁ 𝜋

−𝜋

⃒⃒⃒⃒
𝑃 (𝑒−𝑡𝑒𝑖𝜃)

𝑃 (𝑒−𝑡)

⃒⃒⃒⃒
𝑑𝜃 ⩽

∫︁ 𝜋

−𝜋

(𝑒−𝛽(𝑡−3/2𝜃)2 + 𝑒−𝛾(𝑡−3/2|𝜃|)2/3)𝑑𝜃

Or par le changement de variable 𝑢 = 𝑡−3/2𝜃,∫︁ 𝜋

−𝜋

𝑒−𝛽(𝑡−3/2𝜃)2𝑑𝜃 =

∫︁ 𝜋𝑡−3/2

−𝜋𝑡−3/2

𝑒−𝛽𝑢2

𝑡3/2𝑑𝑢 ⩽ 𝑡3/2
∫︁ +∞

−∞
𝑒−𝛽𝑢2

𝑑𝑢

et ∫︁ 𝜋

−𝜋

𝑒−𝛾(𝑡−3/2|𝜃|)2/3𝑑𝜃 ⩽ 𝑡3/2
∫︁ +∞

−∞
𝑒−𝛾|𝑢|2/3𝑑𝑢

(on vérifie aisément que les deux intégrales aux membres de droite convergent)
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On en déduit que ⃒⃒⃒⃒
⃒
∫︁ 𝜋

−𝜋

𝑒−𝑖𝜋
2𝜃

6𝑡2
𝑃
(︀
𝑒−𝑡𝑒𝑖𝜃

)︀
𝑃 (𝑒−𝑡)

d𝜃

⃒⃒⃒⃒
⃒ ⩽

∫︁ 𝜋

−𝜋

⃒⃒⃒⃒
𝑃 (𝑒−𝑡𝑒𝑖𝜃)

𝑃 (𝑒−𝑡)

⃒⃒⃒⃒
𝑑𝜃 ⩽ 𝐾𝑡3/2

où 𝐾 est la somme des deux intégrales aux membres de droite.

Donc ∫︁ 𝜋

−𝜋

𝑒−𝑖𝜋
2𝜃

6𝑡2
𝑃
(︀
𝑒−𝑡𝑒𝑖𝜃

)︀
𝑃 (𝑒−𝑡)

d𝜃 = 𝑂𝑡→0+(𝑡
3/2)

Partie IV - Conclusion

16. On admet que

ln
(︀
𝑃
(︀
𝑒−𝑡
)︀)︀

=
𝜋2

6𝑡
+

ln(𝑡)

2
− ln(2𝜋)

2
+ 𝑜

𝑡→0+
(1).

Posons 𝑡𝑛 = 𝜋√
6𝑛

(qui tend vers 0+ quand 𝑛 → +∞).

On obtient ∫︁ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃𝑃 (𝑒−𝑡𝑛𝑒𝑖𝜃)

𝑃 (𝑒−𝑡𝑛)
𝑑𝜃 = 𝑂𝑛→+∞(𝑛−3/4)

D’autre part, d’après la formule admise,

𝑃 (𝑒−𝑡𝑛) = 𝑒
𝜋
√
𝑛√
6
√
𝑡𝑛

1√
2𝜋

𝑒𝑜(1) ∼ 𝐾𝑒
𝜋
√
𝑛√
6

1

𝑛1/4

où 𝐾 est une constante strictement positive.

Comme

𝑝𝑛 =
𝑒𝑛𝑡𝑛

2𝜋
𝑃 (𝑒−𝑡𝑛)

∫︁ 𝜋

−𝜋

𝑒−𝑖𝑛𝜃𝑃 (𝑒−𝑡𝑛+𝑖𝜃)

𝑃 (𝑒−𝑡𝑛)
d𝜃

on obtient

𝑝𝑛 = 𝑒
𝜋
√
𝑛√
6 𝑂

(︂
𝑒𝜋

√
𝑛/

√
6 1

𝑛1/4

)︂
𝑂(𝑛−3/4)

= 𝑂

(︂
𝑒

2𝜋
√
𝑛√

6
1

𝑛
1
4
+ 3

4

)︂

= 𝑂

⎛⎜⎝exp
(︁
𝜋
√︁

2𝑛
3

)︁
𝑛

⎞⎟⎠ .
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