MP1 / MP2 Devoir libre 11 - Corrigé 2025 - 2025

Partie | - Généralités

1) a) Soit P et @ deux polynémes, PQ est encore un polynéme donc, par linéarité, = — P(x)Q(z)d(x)
est intégrable d’apreés la condition i) et donc (P|Q) est correctement défini. Vérifions les axiomes
des produits scalaires.

— Soit (P, Q) € R[X]?, (P|Q) = (Q|P) par commutativité du produit.

— Soit @ € R[X], P — (P|Q) est linéaire d’apres la linéarité de 'intégrale. Par symétrie on en
déduit que (P, Q) — (P|Q) est bilinéaire.

— Soit P € R[X] et z € J, P*(z)8(x) est positif d’aprés la condition 4). Par positivité de
I'intégrale, (P|P) > 0.

— Soit P € R[X]. On suppose que (P|P) = 0. Comme J n’est pas réduit & un point que que
x — P2?(x)d(x) est positive et continue (condition i)) on en déduit que pour tout x dans J,
P?(z)6(z) = 0 et donc P(x) = 0 (condition ii)). De ce fait la fonction polynomiale associée &
P a une infinité de racines donc P est le polyndéme nul.

Finalement ’ (P,Q) — (P|Q) est un produit scalaire sur R[X]. ‘

b) Soit P, @ et R sont trois polynomes,

(RP|Q) = /J (RP)(2)Q(x)5(x)dz = /J P(2)(R(2)Q(x))é(z)dx = (P|RQ).

2) Montrer l'existence et 'unicité d’une suite de polynomes (P;);en telle que
(A1) Pour tout i € N le terme de plus haut degré de P; est X°.
(A2) pour tout (i,;) dans N2, i £ j = (P;|Pj) = 0

On pourra montrer par récurrence que pour tout entier n, la suite finie (Py, Py, ..., P,) existe et est
unique.
Montrons par récurrence que pour tout entier n il existe une unique suite de polynémes (P, Py, ..., P,)

vérifiant les conditions
(A1,) Pour tout i € [0,n] le terme de plus haut degré de P; est X°.
(A2,) Pour tout (i,5) dans [0,n]?, i # j = (P;|P;) = 0.
(A3,) La suite (P, ..., P,) est une base de R,[X].
— Initialisation : Pour n = 0, on pose Py = 1. Il vérifie bien les conditions (Alp), (A2¢) et (A3p). De
par (Alp), c’est le seul.
— Hérédité : Soit n € N. On suppose la propriété vraie au rang n et on veut la démontrer au rang
n + 1. On sait qu'il existe une unique suite (P, ..., P,) vérifiant les conditions (Al,), (A2,) et
(A3,).
Si (Qoy - .- Qn,Qnt1) est une suite finie vérifiant les conditions (Aly,+1), (A2,4+1) et (A3,+1), par
restriction des quantificateurs, la suite (Qo, ... Q) vérifie (Al,) et (A2,) c’est donc une famille
libre (comme sous-famille d’une famille libre) de n + 1 polynémes de R,,[X] donc elle vérifie aussi
(A3,,). Par unicité, on en déduit que Vi € [0,n], P, = Q;. De plus, Qui1 = X" + R,41 ol
R,+1 € R, [X]. D’aprés (A3,,) il existe Ay, ..., A, tels que

n
Qni1 = X" + Z il
=0
Maintenant, la condition (A2,,+1) implique que pour tout i € [0,n], 0 = (Qni1|Q:) = (X" Q:) +
Xn+1 .
Ai(Qi]Qi). Cest-a-dire A\; = _((Q|C|2Q)Z) ot le dénominateur n’est pas nul car (Q;|Q;) > 0.
ilQi
Finalement la seule suite finie (Qo,...Qn,@n+1) vérifiant les conditions (Al,y1), (A2,41) et
(A3,,41) est définie par
Qi=P; sii<n
X"HR)
_xrrt oy (TR
Qn-i—l ZZ:() (Pz |Pz) [
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Réciproquement, cette suite vérifie les conditions (Al,41) et (A2,41) par construction. De plus,
c’est une famille orthogonale de polynémes non nuls. Elle est donc libre. C’est donc une base de
Ry, +1[X] en tant que famille libre de n + 2 vecteurs dans un espace vectoriel de dimension n + 2.

La propriété est donc vraie au rang n + 1.
On construit donc ainsi une suite infinie (P;);en qui vérifie les conditions (A1), (A2) et (A3).

3) Soit n un entier et Q un polynéme de degré d strictement inférieur a n. D’aprés la propriété (A3), on
peut décomposer @ dans la base (Py,...,Py) : Q = APy + -+ AgP;. On a alors

d
(QIP) =Y Ni(Pi|Py) =0
i=0
car la famille (P;) est orthogonale.
4) On fixe n > 2.
a) D’apreés la propriété (Al) le polynéme P, — X P,_; est de degré au plus n — 1 (car les coefficients
dominants s’annulent). Ils se décompose donc dans la base (P, ..., P,—1). On en déduit qu’il existe
des réels Cp0;Ch 15 ... ; Cpn—1 tels que

n—1
P, —XP, 1= Zcmkpk
k=0
c’est-a-dire
n—2
P, = (X + Cn,nfl)Pnfl + Z Cn,kPk
k=0
b) Soit k € [0,n — 3].
n—1
0= (P|Py) = (XPua|Ph) + > Coia(Pi|Pi) = (X P 1|Pr) + Croi(Pil Pr).-
i=0

Malntenant7 (XPn_l ’Pk) quest?on 1.b (Pn—l ’XPk) quesﬁon 3 0. Done '
c) Le calcul précédent affirme que Cy, p—2(Pr—2|Pr—2) = —(X Py—1|Pr—2) = —(Pr-1| X Pr—2).

Maintenant, P,,_1 — X P,,_o est de degré inférieur ou égal & n — 2 car le coefficient dominant
s’annule, on peut donc écrire, X P,_9 = P,,—1 + @ ou deg(Q) < n — 1. On en déduit alors, que

(Pn—1|XPn—2) = (Pn—l‘Pn—l“‘Q) = (Pn—1|P'rL—1) +(Pn—1|Q) = (Pn—1|Pn—1)-

question 3

(Pn—l‘Pn—l)
(Pn—Q‘Pn—Q)

on a bien que | Cy, p—2 < 0.

Finalement | C;, ;,—2 = — . Comme le produit scalaire est défini et positif et que P,,_1 # 0

On pose dans ce qui suit ’an =Cppn-1 ‘ et ’ﬂn = —Chn-2 ‘ et on a donc

Pn - (X + an)Pn—l - /BnPn—2

ou B, > 0.
5) L’objet de cette question est I’étude de la réalité des zéros de P, lorsque n > 1.
Soit n € N* on désigne par E, l'ensemble des zéros de P, réels appartenant a J et d’ordre de
multiplicité impair.
a) Soit n € N*.
Si E, était vide, P, n’aurait que des zéros complexes ou de multiplicité paire. On pourrait de
factoriser en

Po= 0 JT(X —ai)® x JT(X? = 8;X + )
i=1 j=1
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8)

ot le premier produit provient des (éventuelles) racines réelles de multiplicité paire et le deuxiéme
des (éventuelles) racines complexes. En particulier, P, serait de signe constant. Or on a (FPy|P,) =

/ P,(z)d(x) = 0. Comme P, est de signe constant et continue, pour tout = dans J, P,(z)d(x) =0
J

et donc P, = 0. C’est absurde. On en déduit que ’En n’est pas vide.

m
b) Soit donc Ey, = {ug,...,upn} ol <m < navec ug < ug < -+ < Up. On pose S = [ (X — uyg).
k=1
On peut donc écrire

S r m
P, = 5H(X — ;)i x H(X2 — B; X +75) x H(X — )20 L
i=1 j=1 k=1
on en déduit que
s r m
PSS = 5H(X — ;)i x H(X2 — B; X +75) % H(X — )22
i=1 j=1 k=1

garde un signe constant et n’est pas nul donc
(S|P,) = / S(2) Po(2)d(2)de
J

n’est pas nul. On en déduit que S n’est pas de degré strictement inférieur & P (qui est de degré

n). Comme S ne peut pas étre de degré supérieur a P, on a ’ m = deg(S) =n ‘

c) Le polynéme P, étant de degré n. Il a n zéros (éventuellement complexes) comptés avec multipli-
cité. On vient de voir que #FE, = n. Donc P,, a n zéros réels dans J de multiplicité impair. Il n’a
donc pas d’autres zéros et de plus ils sont tous simples/

On note a et b (dans R) les bornes de J. Soit n > 2. On note %, le prédicat : « si on note
{ui,ug,...,uy} les zéros de P, avec u; < ug < -+ < Up, {V1,V2,...,Up—1} ceux de P,_; avec
v] < vg < -+ < vy alors, pour tout ¢ € [1,n — 1], on a u; < v; < u;4+1 ». Procédons par récurrence.
— Initialisation : Pour n = 2 on sait que P, = X — v et P, = (X — u1)(X — uz). On utilise que
Py, = (X 4+ ag)P1 — 2 oit By > 0. En particulier, Py(v1) = —f2 < 0. Comme lierPg > 0 et

a

lim P > 0, en utilisant le théoréme des valeurs intermédiaires (P, est continue), on en déduit P
e

s’annule sur |a, v1] et sur Juy, b] et donc on a bien u; < v1 < ua.

— Hérédité : Pour n > 2. On suppose 7, et on veut montrer .7,11. Pour tout ¢ € [1,n], d’aprés
Ky, Poq1(vi) = (v —u1) ... (v — i) ... (v; — un_1) est du signe de (—1)"* (les i — 1 premiers
facteurs dans le produit précédent sont strictement positifs et les n — ¢ derniers sont strictement
négatifs). D’apreés la relation P11 = (X + apt1)Pp — Bnt1Pn—1 on en déduit que P,11(v;) est du
signe de (—1)"~*1. De plus, comme P,y s’écrit (X —wi)... (X —wyy1) avec a < wy < ... <
Wn+1 < b, lim, P41 est du signe de (—1)”+1 et limy P41 est strictement positive. De ce fait, par
le théoréme des valeurs intermédiaires, P, 1 s’annule au moins une fois sur chacun des intervalles
la,v1[, Jvi,va[,...,]vn,b[. On a ainsi les n + 1 racines et donc a < w1 < v; < we < ... < v, <
Wn+1 < b, ce qu’il fallait démontrer.

Partie Il - Polynémes de Laguerre

La fonction § vérifie les conditions i) et ). De plus pour n € N, la fonction z +— x"e™" est continue

sur [0,4o00[. De plus z"e ™ = Jr%O(I%) et x +— % est intégrable sur [1,4o00[ donc = +— z"e ™" est
intégrable sur [0, +oo[. La condition i) est vérifiée.

On pose,sin € N: f, : z+— z"e ™ et A\, = (—1)". On considére alors la fonction

IL, : 2 — A€ f{V ().
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a) On a ’Ho cx— 1,11 : x— x — 1| De plus pour tout x dans R, f2(2) = 27" — dxe T 4 x?e "

d’aprés la formule de Leibniz. On en déduit que ’ Oy iz 2% — 4z +2 ‘

b) Soit n un entier naturel. On pose u : z — z™. D’apreés la formule de Leibniz

n

£ = ()™ =3 (Z) () 5n—h)

k=0

On en déduit que pour = € R,

Finalement,

L : = — Zn:(_l)k (n|)2 $n—k‘
A e N (CRE

n
La fonction IT,, est bien polynomiale de degré n et, si on note IT, = > aka"_k, ona:
k=0

(n!)?
((n — k))2k! |

c) 1) On utilise comme ci-dessus la formule de Leibniz. Pour tout = dans R,

P (z) = i (Z) 0 (2)5P P (z) = i (Z) (ni!k)!xn—k(_l)p—ke—x.

k=0 k=0

amk = (—1)k

On en déduit que f}lp)(()) = 0 car, dans la somme ci-dessus, n — k > 0 car k < p < n.

|
ii) On déduit de la formule ci-dessus que fép) o <g> n—;x"(—l)pe*x = (—1)Px"e "
o0 n!

iii) Soit i < j,
+o0
IL|TL) = (—1) ) ()T, () d
(I TL) = ( >/0 19 (@) (2)da

On intégre par parties en intégrant f](j ) et en dérivant II;. On a alors

0

i) = - ([ eme) " - [ e e).

Le terme « entre crochet » est nul d’aprés 8.c.i et 8.c.ii on a donc

“+oo
; i—1
Oy = (17 [ N @),
On peut alors itérer le procédé i+ 1 fois (ce qui est possible car i < j donc l'ordre de dérivation
de f; reste positif ou nul) et on obtient que

e .
(IL|TL) = (~1)p7++ /0 £ @)l (1)

Mais comme II; est de degré i, HEHU =0 et donc | (IL;|II;) = 0|
d) On a montré que la famille de polynéme (II;) vérifiant les conditions (A1) (en effet a, o = 1), (A2)
d’apres la question précédente. On en déduit alors qu’elle vérifie aussi (A3). Par unicité on a bien
que pour tout entier n, II,, = P,.
9) Ona P, =1II; = X — 1. Il a un unique zéro en v; = 1. On a aussi Py = Iy = X2 —4X + 2. Ses zéros
4—/8
2

qu’ils se trouvent dans |0, +oo[. De plus on vérifie bien que u; < v; < ug.

=2—+/2 < 1etuy =242 On a bien que P; et P, ont que des zéros simples et

sont u; =
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+oo
10) On pose K,, = / x"e *dx.
0

On sait que K, est bien définie d’aprés la question 7). Ensuite, on procéde par intégration par parties :
+00 n too
K, = / 2"e Tdr = [—x”e‘“”]o s n/ 2" e % dy.
0 0

On obtient donc que K,, = nK,_1. Par récurrence, on obtient que K,, = n!Kj. Or Ky = 1. Finalement
Len
(PalPn) = [3° An 72”) P, (z)dz. Intégrant n fois par parties, d’aprés 8)c), tous les crochets sont nuls.
On obtient

(PalPa) = (~1)" /0 " A fnl) P ()

(n)

Or P, est de degré n et coefficient dominant 1, donc P,/ = nl. De plus A\, = (—=1)".

Ainsi

oo
(P|Pn) = n!/ e Tx"dr = n!K, =|(n!)?
0

12) a) Selon la question 4)c), 5, = —Cppn—2 = (Ph—1|Pn—1)/(Pn—2|Pn—2). Par la question précédente, on
a donc

B = (n—1)>
b) Evaluant en 0 la relation rappelée par I’énoncé,
P (0) = anPp—1(0) — BnPp—2(0)

(nh)?
((n—n)!)2n!

n

Or pour tout naturel n, P,(0) = ayn = (—1) = (—1)"n! (cf question 8)b)).

Ainsi
(=1)"n! = ap(=1)" 1 n—-1D!—(n—13*(-1)""2*n-2)!
nin—1) = —ay(n—1)—(n—1)>
’an = —(2n—1)‘

13) On note (b, ) les coefficients de X™ dans la base (FPy, Py, ..., Py,), c’est-a-dire :

n
= Z bn,kPn—k’-
k=0

a) La famille (P;) étant orthogonale, (X"| P,_k) = by (Pp—|Pn—). Donc
(X"1Pus) _ (X7|Pus)
(Pok|Pa—k)  ((n—k)1)?

Or, en procédant par intégration par parties successives (les crochets convergent et valent 0 comme
a la question 8.c.iii)

bn,k =

.
(X"|Puy) = (—1)n /0 ) (@) de

+00
= (1)"_k_1n/0 z" ! éﬁ;kil)(:c)dx

(n!)?

Finalement b, j, = W
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b) On a by = |an i

c) En utilisant la formule ci-dessus, by, o = = 1. C’est prévisible car X" et P, sont unitaires

de degré n et que, pour k > 0, deg(P,—
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