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Partie I - Généralités

1) a) Soit P et Q deux polynômes, PQ est encore un polynôme donc, par linéarité, x 7→ P (x)Q(x)δ(x)
est intégrable d’après la condition iii) et donc (P |Q) est correctement défini. Vérifions les axiomes
des produits scalaires.
— Soit (P,Q) ∈ R[X]2, (P |Q) = (Q|P ) par commutativité du produit.
— Soit Q ∈ R[X], P 7→ (P |Q) est linéaire d’après la linéarité de l’intégrale. Par symétrie on en

déduit que (P,Q) 7→ (P |Q) est bilinéaire.
— Soit P ∈ R[X] et x ∈ J , P 2(x)δ(x) est positif d’après la condition ii). Par positivité de

l’intégrale, (P |P ) ⩾ 0.
— Soit P ∈ R[X]. On suppose que (P |P ) = 0. Comme J n’est pas réduit à un point que que

x 7→ P 2(x)δ(x) est positive et continue (condition i)) on en déduit que pour tout x dans J ,
P 2(x)δ(x) = 0 et donc P (x) = 0 (condition ii)). De ce fait la fonction polynomiale associée à
P a une infinité de racines donc P est le polynôme nul.

Finalement (P,Q) 7→ (P |Q) est un produit scalaire sur R[X].
b) Soit P,Q et R sont trois polynômes,

(RP |Q) =

∫
J
(RP )(x)Q(x)δ(x)dx =

∫
J
P (x)(R(x)Q(x))δ(x)dx = (P |RQ).

2) Montrer l’existence et l’unicité d’une suite de polynômes (Pi)i∈N telle que
(A1) Pour tout i ∈ N le terme de plus haut degré de Pi est Xi.
(A2) pour tout (i, j) dans N2, i ̸= j ⇒ (Pi|Pj) = 0

On pourra montrer par récurrence que pour tout entier n, la suite finie (P0, P1, . . . , Pn) existe et est
unique.
Montrons par récurrence que pour tout entier n il existe une unique suite de polynômes (P0, P1, . . . , Pn)
vérifiant les conditions

(A1n) Pour tout i ∈ [[0, n]] le terme de plus haut degré de Pi est Xi.
(A2n) Pour tout (i, j) dans [[0, n]]2, i ̸= j ⇒ (Pi|Pj) = 0.
(A3n) La suite (P0, . . . , Pn) est une base de Rn[X].

— Initialisation : Pour n = 0, on pose P0 = 1. Il vérifie bien les conditions (A10), (A20) et (A30). De
par (A10), c’est le seul.

— Hérédité : Soit n ∈ N. On suppose la propriété vraie au rang n et on veut la démontrer au rang
n + 1. On sait qu’il existe une unique suite (P0, . . . , Pn) vérifiant les conditions (A1n), (A2n) et
(A3n).
Si (Q0, . . . Qn, Qn+1) est une suite finie vérifiant les conditions (A1n+1), (A2n+1) et (A3n+1), par
restriction des quantificateurs, la suite (Q0, . . . Qn) vérifie (A1n) et (A2n) c’est donc une famille
libre (comme sous-famille d’une famille libre) de n+ 1 polynômes de Rn[X] donc elle vérifie aussi
(A3n). Par unicité, on en déduit que ∀i ∈ [[0, n]], Pi = Qi. De plus, Qn+1 = Xn+1 + Rn+1 où
Rn+1 ∈ Rn[X]. D’après (A3n) il existe λ0, . . . , λn tels que

Qn+1 = Xn+1 +

n∑
i=0

λiPi.

Maintenant, la condition (A2n+1) implique que pour tout i ∈ [[0, n]], 0 = (Qn+1|Qi) = (Xn+1|Qi)+

λi(Qi|Qi). C’est-à-dire λi = −(Xn+1|Qi)

(Qi|Qi)
où le dénominateur n’est pas nul car (Qi|Qi) > 0.

Finalement la seule suite finie (Q0, . . . Qn, Qn+1) vérifiant les conditions (A1n+1), (A2n+1) et
(A3n+1) est définie par 

Qi = Pi si i ⩽ n

Qn+1 = Xn+1 −
∑n

i=0

(Xn+1|Pi)

(Pi|Pi)
Pi
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Réciproquement, cette suite vérifie les conditions (A1n+1) et (A2n+1) par construction. De plus,
c’est une famille orthogonale de polynômes non nuls. Elle est donc libre. C’est donc une base de
Rn+1[X] en tant que famille libre de n+ 2 vecteurs dans un espace vectoriel de dimension n+ 2.
La propriété est donc vraie au rang n+ 1.

On construit donc ainsi une suite infinie (Pi)i∈N qui vérifie les conditions (A1), (A2) et (A3).
3) Soit n un entier et Q un polynôme de degré d strictement inférieur à n. D’après la propriété (A3), on

peut décomposer Q dans la base (P0, . . . , Pd) : Q = λ0P0 + · · ·+ λdPd. On a alors

(Q|Pn) =
d∑

i=0

λi(Pi|Pn) = 0

car la famille (Pi) est orthogonale.
4) On fixe n ⩾ 2.

a) D’après la propriété (A1) le polynôme Pn −XPn−1 est de degré au plus n− 1 (car les coefficients
dominants s’annulent). Ils se décompose donc dans la base (P0, . . . , Pn−1). On en déduit qu’il existe
des réels Cn,0;Cn,1; . . . ;Cn,n−1 tels que

Pn −XPn−1 =
n−1∑
k=0

Cn,kPk

c’est-à-dire

Pn = (X + Cn,n−1)Pn−1 +
n−2∑
k=0

Cn,kPk.

b) Soit k ∈ [[0, n− 3]].

0 = (Pn|Pk) = (XPn−1|Pk) +
n−1∑
i=0

Cn,i(Pi|Pk) = (XPn−1|Pk) + Cn,k(Pk|Pk).

Maintenant, (XPn−1|Pk) =
question 1.b

(Pn−1|XPk) =
question 3

0 . Donc Cn,k = 0 .

c) Le calcul précédent affirme que Cn,n−2(Pn−2|Pn−2) = −(XPn−1|Pn−2) = −(Pn−1|XPn−2).
Maintenant, Pn−1 − XPn−2 est de degré inférieur ou égal à n − 2 car le coefficient dominant
s’annule, on peut donc écrire, XPn−2 = Pn−1 +Q où deg(Q) ⩽ n− 1. On en déduit alors, que

(Pn−1|XPn−2) = (Pn−1|Pn−1 +Q) = (Pn−1|Pn−1) + (Pn−1|Q) =
question 3

(Pn−1|Pn−1).

Finalement Cn,n−2 = −(Pn−1|Pn−1)

(Pn−2|Pn−2)
. Comme le produit scalaire est défini et positif et que Pn−1 ̸= 0

on a bien que Cn,n−2 < 0.

On pose dans ce qui suit αn = Cn,n−1 et βn = −Cn,n−2 et on a donc

Pn = (X + αn)Pn−1 − βnPn−2

où βn > 0.
5) L’objet de cette question est l’étude de la réalité des zéros de Pn lorsque n ⩾ 1.

Soit n ∈ N∗, on désigne par En l’ensemble des zéros de Pn réels appartenant à J̊ et d’ordre de
multiplicité impair.
a) Soit n ∈ N∗.

Si En était vide, Pn n’aurait que des zéros complexes ou de multiplicité paire. On pourrait de
factoriser en

Pn = δ

s∏
i=1

(X − αi)
2pi ×

r∏
j=1

(X2 − βjX + γj)
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où le premier produit provient des (éventuelles) racines réelles de multiplicité paire et le deuxième
des (éventuelles) racines complexes. En particulier, Pn serait de signe constant. Or on a (P0|Pn) =∫
J
Pn(x)δ(x) = 0. Comme Pnδ est de signe constant et continue, pour tout x dans J , Pn(x)δ(x) = 0

et donc Pn = 0. C’est absurde. On en déduit que En n’est pas vide.

b) Soit donc En = {u1, . . . , um} où 1 ⩽ m ⩽ n avec u1 < u2 < · · · < um. On pose S =
m∏
k=1

(X − uk).

On peut donc écrire

Pn = δ
s∏

i=1

(X − αi)
2pi ×

r∏
j=1

(X2 − βjX + γj)×
m∏
k=1

(X − uk)
2qk+1

on en déduit que

PnS = δ
s∏

i=1

(X − αi)
2pi ×

r∏
j=1

(X2 − βjX + γj)×
m∏
k=1

(X − uk)
2qk+2

garde un signe constant et n’est pas nul donc

(S|Pn) =

∫
J
S(x)Pn(x)δ(x)dx

n’est pas nul. On en déduit que S n’est pas de degré strictement inférieur à P (qui est de degré
n). Comme S ne peut pas être de degré supérieur à Pn on a m = deg(S) = n .

c) Le polynôme Pn étant de degré n. Il a n zéros (éventuellement complexes) comptés avec multipli-
cité. On vient de voir que #En = n. Donc Pn a n zéros réels dans J̊ de multiplicité impair. Il n’a
donc pas d’autres zéros et de plus ils sont tous simples/

6) On note a et b (dans R) les bornes de J . Soit n ⩾ 2. On note Hn le prédicat : « si on note
{u1, u2, . . . , un} les zéros de Pn avec u1 < u2 < · · · < un, {v1, v2, . . . , vn−1} ceux de Pn−1 avec
v1 < v2 < · · · < vn−1 alors, pour tout i ∈ [[1, n− 1]], on a ui < vi < ui+1 ». Procédons par récurrence.
— Initialisation : Pour n = 2 on sait que P1 = X − v1 et P2 = (X − u1)(X − u2). On utilise que

P2 = (X + α2)P1 − β2 où β2 > 0. En particulier, P2(v1) = −β2 < 0. Comme lim
a+

P2 > 0 et

lim
b−

P2 > 0, en utilisant le théorème des valeurs intermédiaires (P2 est continue), on en déduit P2

s’annule sur ]a, v1[ et sur ]v1, b[ et donc on a bien u1 < v1 < u2.
— Hérédité : Pour n ⩾ 2. On suppose Hn et on veut montrer Hn+1. Pour tout i ∈ [[1, n]], d’après

Hn, Pn−1(vi) = (vi − u1) . . . (vi − ui) . . . (vi − un−1) est du signe de (−1)n−i (les i − 1 premiers
facteurs dans le produit précédent sont strictement positifs et les n − i derniers sont strictement
négatifs). D’après la relation Pn+1 = (X + αn+1)Pn − βn+1Pn−1 on en déduit que Pn+1(vi) est du
signe de (−1)n−i+1. De plus, comme Pn+1 s’écrit (X − w1) . . . (X − wn+1) avec a < w1 < . . . <
wn+1 < b, lima Pn+1 est du signe de (−1)n+1 et limb Pn+1 est strictement positive. De ce fait, par
le théorème des valeurs intermédiaires, Pn+1 s’annule au moins une fois sur chacun des intervalles
]a, v1[, ]v1, v2[, . . . , ]vn, b[. On a ainsi les n + 1 racines et donc a < w1 < v1 < w2 < . . . < vn <
wn+1 < b, ce qu’il fallait démontrer.

Partie II - Polynômes de Laguerre

7) La fonction δ vérifie les conditions i) et ii). De plus pour n ∈ N, la fonction x 7→ xne−x est continue
sur [0,+∞[. De plus xne−x = o

+∞
( 1
x2 ) et x 7→ 1

x2 est intégrable sur [1,+∞[ donc x 7→ xne−x est

intégrable sur [0,+∞[. La condition iii) est vérifiée.

8) On pose, si n ∈ N : fn : x 7→ xne−x et λn = (−1)n. On considère alors la fonction

Πn : x 7→ λne
xf (n)

n (x).
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a) On a Π0 : x 7→ 1 ; Π1 : x 7→ x− 1 . De plus pour tout x dans R, f (2)
2 = 2e−x − 4xe−x + x2e−x

d’après la formule de Leibniz. On en déduit que Π2 : x 7→ x2 − 4x+ 2 .
b) Soit n un entier naturel. On pose u : x 7→ xn. D’après la formule de Leibniz

f (n)
n = (uδ)(n) =

n∑
k=0

(
n

k

)
u(k)δ(n−k)

On en déduit que pour x ∈ R,

f (n)
n (x) =

n∑
k=0

(
n

k

)
n!

(n− k)!
xn−k(−1)n−ke−x

Finalement,

Πn : x 7→
n∑

k=0

(−1)k
(n!)2

((n− k)!)2k!
xn−k.

La fonction Πn est bien polynomiale de degré n et, si on note Πn =
n∑

k=0

an,kX
n−k, on a :

an,k = (−1)k
(n!)2

((n− k)!)2k!
.

c) i) On utilise comme ci-dessus la formule de Leibniz. Pour tout x dans R,

f (p)
n (x) =

p∑
k=0

(
p

k

)
u(k)(x)δ(p−k)(x) =

p∑
k=0

(
p

k

)
n!

(n− k)!
xn−k(−1)p−ke−x.

On en déduit que f
(p)
n (0) = 0 car, dans la somme ci-dessus, n− k > 0 car k ⩽ p < n.

ii) On déduit de la formule ci-dessus que f
(p)
n ∼

+∞

(
p

0

)
n!

n!
xn(−1)pe−x = (−1)pxne−x.

iii) Soit i < j,

(Πi|Πj) = (−1)j
∫ +∞

0
f
(j)
j (x)Πi(x)dx

On intègre par parties en intégrant f
(j)
j et en dérivant Πi. On a alors

(Πi|Πj) = (−1)j
([

f
(j−1)
j (x)Πi(x)

]+∞

0
−
∫ +∞

0
f
(j−1)
j (x)Π′

i(x)dx

)
.

Le terme « entre crochet » est nul d’après 8.c.i et 8.c.ii on a donc

(Πi|Πj) = (−1)j+1

∫ +∞

0
f
(j−1)
j (x)Π′

i(x)dx.

On peut alors itérer le procédé i+1 fois (ce qui est possible car i < j donc l’ordre de dérivation
de fj reste positif ou nul) et on obtient que

(Πi|Πj) = (−1)j+i+1

∫ +∞

0
f
(j−i−1)
j (x)Π

(i+1)
i (x)dx.

Mais comme Πi est de degré i, Π(i+1)
i = 0 et donc (Πi|Πj) = 0 .

d) On a montré que la famille de polynôme (Πi) vérifiant les conditions (A1) (en effet an,0 = 1), (A2)
d’après la question précédente. On en déduit alors qu’elle vérifie aussi (A3). Par unicité on a bien
que pour tout entier n, Πn = Pn.

9) On a P1 = Π1 = X − 1. Il a un unique zéro en v1 = 1. On a aussi P2 = Π2 = X2 − 4X + 2. Ses zéros

sont u1 =
4−

√
8

2
= 2−

√
2 < 1 et u2 = 2+

√
2. On a bien que P1 et P2 ont que des zéros simples et

qu’ils se trouvent dans ]0,+∞[. De plus on vérifie bien que u1 < v1 < u2.
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10) On pose Kn =

∫ +∞

0
xne−xdx.

On sait que Kn est bien définie d’après la question 7). Ensuite, on procède par intégration par parties :

Kn =

∫ +∞

0
xne−xdx =

[
−xne−x

]+∞
0

+ n

∫ +∞

0
xn−1e−xdx.

On obtient donc que Kn = nKn−1. Par récurrence, on obtient que Kn = n!K0. Or K0 = 1. Finalement
Kn = n! .

11) (Pn|Pn) =
∫∞
0 λnf

(n)
n (x)Pn(x)dx. Intégrant n fois par parties, d’après 8)c), tous les crochets sont nuls.

On obtient
(Pn|Pn) = (−1)n

∫ ∞

0
λnfn(x)P

(n)
n (x)dx

Or Pn est de degré n et coefficient dominant 1, donc P
(n)
n = n!. De plus λn = (−1)n.

Ainsi
(Pn|Pn) = n!

∫ ∞

0
e−xxndx = n!Kn = (n!)2

12) a) Selon la question 4)c), βn = −Cn,n−2 = (Pn−1|Pn−1)/(Pn−2|Pn−2). Par la question précédente, on
a donc

βn = (n− 1)2

b) Evaluant en 0 la relation rappelée par l’énoncé,

Pn(0) = αnPn−1(0)− βnPn−2(0)

Or pour tout naturel n, Pn(0) = an,n = (−1)n
(n!)2

((n− n)!)2n!
= (−1)nn! (cf question 8)b)).

Ainsi

(−1)nn! = αn(−1)n−1(n− 1)!− (n− 1)2(−1)n−2(n− 2)!

n(n− 1) = −αn(n− 1)− (n− 1)2

αn = −(2n− 1)

13) On note (bn,k) les coefficients de Xn dans la base (P0, P1, . . . , Pn), c’est-à-dire :

Xn =

n∑
k=0

bn,kPn−k.

a) La famille (Pi) étant orthogonale, (Xn| Pn−k) = bn,k(Pn−k|Pn−k). Donc

bn,k =
(Xn|Pn−k)

(Pn−k|Pn−k)
=

(Xn|Pn−k)

((n− k)!)2

Or, en procédant par intégration par parties successives (les crochets convergent et valent 0 comme
à la question 8.c.iii)

(Xn|Pn−k) = (−1)n−k

∫ +∞

0
xnf

(n−k)
n−k (x)dx

= (−1)n−k−1n

∫ +∞

0
xn−1f

(n−k−1)
n−k (x)dx

= · · ·

= n(n− 1) · · · (k + 1)

∫ +∞

0
xkfn−k(x)dx

=
n!

k!

∫ +∞

0
xne−xdx

=
(n!)2

k!

Finalement bn,k =
(n!)2

k!((n− k)!)2
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b) On a bn,k = |an,k|.

c) En utilisant la formule ci-dessus, bn,0 =
(n!)2

0!(n!)2
= 1. C’est prévisible car Xn et Pn sont unitaires

de degré n et que, pour k > 0, deg(Pn−k) < n.
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