MP1 / MP2 Devoir surveillé 6 (plus simple) - Corrigé 2025 — 2026

Exercice

1. Soit X une variable aléatoire discrete. On pose f : x +— €. D’apres le cours e = f(X) est une
variable aléatoire discrete.

On suppose de plus que X est bornée par un réel a. Pour tout w € €2,

X < HIX@I ¢ ol

On en déduit que e'X est d’espérance finie.

2. a) La fonction ¢ : u +— e* est de classe €2 et ¢" : u +— e*. Cela montre que ¢” > 0 et donc ¢ est
convexe.

b) Soit z € [—1,1], posons A\ = HTx €[0,1].Onal—X= sz
Par convexité de ¢,
Ap(t) + (1 = N)o(—t) = d(At + (1 = A) x (—t))

1+ txl—x y
— —— =txr,ona:
2 2

e < et + (1= N)e?

Comme A+ (1 —A) x (—t) =t x

c) En utilisant ce qui précede, et < el + et

Par croissance de 'espérance,

Lx(t) = E(e¥) < ¢'E (ﬂ> +e'E (ﬂ) — ch(t) + ¢ - eitE(X)

Comme X est centrée, Lx(t) < ch(t).
d) D’apres le cours,

+00 u2n u2 +00 uQn
) =3 et e () = X 5

n=0 n=0

e) Montrons par récurrence que pour tout n € N, 2" x n! < (2n)!.
— Initialisation. Pour n =0, 2° x 0! = 1 < 0.
— Hérédité. Soit n € N, on suppose que 2" x n! < (2n)!. On a alors

2" (n4+ 1) =2x (n+1) x 2" x n! < (2n)! x (2n +2) < (2n +2)!

Par récurrence, on obtient que pour tout n € N, 2" x n! < (2n)!.
f) En utilisant les question 2.c) et 2.d) on obtient que

+oo t2n +00 t2n t2
Lx(t) < ch(t) = Z @) < Z S = P (5)
=0

n=0 n

3. a) Soit i € N*. On pose Y; = % La variable aléatoire Y; est bornée et centrée. En utilisant la

question 2.f),
aZt?

Ly, (t) = B(e™) = B(e"™") = Ly,(tay) < exp (T)
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b) Soit n € N*,

Lg

n

(t) = B(e") = B(e - ™) " B B(e) = [] Ly (1)

En effet les variables !Xt ..., e!*" sont indépendantes par le lemme des coalitions. En utilisant

la question 3.a)
- alt? t2
o< o (%) o (25)

=1

¢) Comme x — e'® est croissante, pour w € €, si S, (w) > € alors ! > e'*. On en déduit que
(S, =¢) C (e =€)

On en déduit que
P(S, > ¢) < P(e" > )
Comme la variable aléatoire e*>» est positive, par I'inégalité de Markov,

E(S) _ Ls, (1)

P(etsn > 6t8) < ets ele

Finalement, en utilisant la question précédente,

Ls, (t t?
P(S, >¢) < S*;( ) < exp (—te + 5&)
e 15
4. Notons h : t — —te + %Bn. Elle est dérivable et h'(t) = —e + t/3,. La fonction h atteint son
minimum en ¢t = Bin On peut donc appliquer le résultat de la question 3.c avec t = Bin et on
obtient
€ g2 g2
P(S, >¢) <exp _EX6+Q_@%X@1 = exp 35
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Probleme
Partie |

Soit P € Ri[X]. Le polynéme P appartient a Ker(yy) si et seulement si P(0) = P(1) =... =
P(n) = 0. On en déduit que P a au moins n + 1 racines. Comme P est de degré au plus k < n

P est le polynéme nul. On a donc |Ker(¢r) = {0} | On en déduit que ¢y est injective.

On utilise le théoreme du rang qui affirme que rg(¢y) = dim(R,[X]) — dim(Ker(¢y)). D’apres
ce qui précede, rg(py) = dim(Ry[X]) = k + 1.
On a montré que ¢y est injectif. De plus, il est surjectif si et seulement k+1 = n+1. Finalement

’cpk est un isomorphisme si et seulement si k =n ‘

D’apres la question 1.c) 'application ¢, est un isomorphisme de R,[X] dans R"™!. De ce
fait (yo,...,y,) € R™™ a un unique antécédent par ¢, ce qui signifie qu’il existe un unique
polynome Y tel que ¢,(Y) = (yo, ..., y,) cest-a-dire tel que pour tout 7 € [0,n], Y (i) = y;.
Soit j € [0,n] on peut poser xg = -+ =x;_1 = ;41 =--- =2, = 0 et ; = 1. En appliquant
la question précédente, il existe un unique polynome L; € R,[X] tel que pour tout i € [0,n],
Lj (l) =T; = 5i,j~

On reconnait la base des polynomes de Lagrange. On voit que c’est une famille de n + 1
polynomes de R, [X] qui est de dimension n + 1. Il suffit donc de montrer que c’est une famille
libre. Soit (A;)o<i<n des scalaires tels que AgLo + - - + Ay Ly, = O, [x]. En évaluant en i € [0, 7]
on obtient

Cela montre que la |famille (Ly, ..., L,) est libre; c’est donc une base |.

Soit P € R,[X]. On le décompose dans la base £ : P = Y A\;L;. En évaluant en 0, 1,... on
j=0

obtient que pour tout j € [0,n], P(j) = A\;L;(j) = A;. On a donc | P =Y P(j)L;
=0

3. On suppose que k = n. Pour tout polynéme P € R, [X], A(P) = >_(y; — P(7))? > 0. De plus pour

=0

le polynome Y défini ci-dessus, A(Y) = 0. On en déduit que myq existe et vaut 0.

Partie Il

Montrons que ( | ) est un produit scalaire

— Pour tout (P,Q) € R,[X]?, (P|Q) = EP() (1) =(Q|P).
— Soit P € R,[X]. Soit @1, Q2 dans R, [X] et A1, Ay dans R.

(PIMQ1+ AQ2) = ZP (AM1Q1(7) + X2Q2(7)) = M(P|Q1) + A2 (P|Q2)

On en déduit que ( | ) est linéaire & droite et donc bilinéaire par symétrie.

— Soit P € R,[X], (P|P) = i P(i)?
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— Soit P € R,[X]. On suppose que (P|P) =Y P(i)*> = 0. C’est une somme de nombres positifs
=0

On a bien montré quel ( | ) est un produit scalaire.

5. a)

6. a)

qui est nulle. On en déduit que pour tout i [0,n], P(i)? = 0 et donc P(i) = 0. Le polynome
P a donc au moins n + 1 racines, comme il est de degré au plus n, c’est le polynome nul.

Soit (i, 7) € [0,n]? avec i # j,

3

(Lil Lj) = > Li(k)L;j(k) = L;(i) =0

La deuxieme égalité venant du fait que L;(k) = 0 si k # i. La famille £ est donc orthogonale.
Soit ¢ € [0, n],

| Lil| = /(Li| Li) =

Cela montre que .Z est une famille orthonormeée.
On voit que

(1) = 31 = [ T et (1)) = Y1 xi = [z

=0 =0

Z P N+1)(2N+1)

Montrons par récurrence que pour tout entier N € N*, Sy = Le cas

N =1 est évident. Supposons que la propriété est vraie pour un entler N > 1 et démontrons-la
pour N + 1.

N(N +1)(2N + 1) (N+1)(N@2N +1)+6(N+1))

6

Sni1=Sv+(N+1)*= + (N +1)? =

Or N2N +1)4+6(N+1)) =2N?+7N +6 = (N + 2)(2N + 3). On en déduit que

o (NHL(N+2)2N +3)
N+1 = 6

Cela acheéve la récurrence.
On en déduit que

(X|X) = ZZ n(n+1)(2n+ 1)

Soit P € R,[X],
¥ = PIF = (Y = PIY = P) = 3 (¥ (i) = P@)* = (s — Pi))* = A(P)

On voit que
min{A(P) , P € R¢[X]} = min{||Y — P||* , P € R[X]} = (d(P,Ri[X]))*

Il existe donc un unique polynéme Py qui est le projeté orthogonal de Y sur Ry[X] tel que
my = [|Y = Pi||* = A(Fy).
En particulier, Y — Py appartient a 'orthogonal de Ry [X].
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¢) On cherche Py € Ro[X] tel que Y — P, soit orthogonal a Ry[X] = Vect(1). On pose Py = al. Il
doit vérifier que (Y — Fy|l) =0 c’est z‘%—dire (By|1) = (Y|1). Or (Ry|1) = a(l]l) = (n+ 1)a et

De plus comme Y — Py L By, ||[Y])*> = ||P0||2 +|IY = B ce qui implique

mo = [IY = Bl* = [IY]* = [[Ro]|* = Zy (Z y)

(Y1) = > y;. Finalement | ;,
i=0

d) On voit que

2q—1

(Y1) = Z?Jz—q C]— et (Y[X) = Zzyz ZZ—ZZ_ q—l q(3q2—1): e

On calcule le projeté orthogonal P; de Y sur R;[X]. On pose P, = aX + b. En procédant
comme ci-dessus, on obtient que a, b vérifie le systeme

{ a(X[1) +b(1[1) = (Y[1)
a(X[X) +0(1]X) = (Y]X)

C’est-a-dire le systeme

1
@a (n+1)b = 0
1 1 1)
o+ DY) nlnt D), o ()
6 2 4
Il est équivalent a
na+2b = 0
2n(2n+1)a+6nb = —3(n+1)
3 1 3 1
On en déduit que a = —M = M
n(n + 2) 2(n+2)
: 3(n+1) 3n+1)  3(n+1)
Final t| P =— X 2X —
inalement | P Y P + Yt 2+ 2)( n)

Partie Il

7. Comme dim(R;[X]) = k + 1 et que dim(Ry_1[X]) = k, dim(F}) = 1.
8. a) Soit R € Ry_1[X]. D’apres la condition ii), (Bo,...,Bk-1) est une base de Ry_1][X] donc il

k—1
existe une famille de scalaires (a;)ocicr_1 telle que R = > o; X*. La famille (By, ..., By) étant
i=0
k—1
orthogonale on obtient que | (Bx| R) = > a;(Bg|B;) =
i=0

De méme, par définition du projeté orthogonal X* — Q;, € R;_1[X]* donc | (X* — Qx| R) = 0.

On vient de monter que By et X* — Q, appartiennent a F}, qui est de dimension 1. Les deux
polynomes sont donc colinéaires.
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b) La question précédente montre qu'une si une famille (By,..., B,) vérifie les trois conditions
alors By = 1 et pour k € [1,n], By = (37)(X* — Qy).
Réciproquement cette famille vérifie les conditions i) et iii) de maniere évidente. De plus si
0 < k <k < nalors B, € Rg[X] C Rp1[X] et By € Rp_4[X]*. On en déduit que
(By| Brr) = 0. La condition ii) est vérifiée puisque de plus une famille orthogonale de vecteurs
non nuls est libre et donc (By, ..., Bg) est une base de R;[X].

¢) On procede comme a la fin de la partie II pour calculer @ et Q.
Le polynéme @) est le projeté orthogonal de X sur Ro[X] = Vect(1). Il est de la forme @Q; = al.

1
De plus X — @y L 1 ce qui implique que (X|1) —a(l|]l) =0 <= @ —a(n+1)=0.
On obtient |Q; = 5 | puis | By = @) (X = Q1) =2X —n|

De méme, le polynome @, est le projeté orthogonal de X? sur R;[X] = Vect(1, X). 1l est de la
forme Q2 = aX +b. De plus X? — Qs L 1 et X? — Q5 L X ce qui implique que

{ (1X)a+ (110 = (1]X?)
(X|Xa+ (X|1)b = (X]|X?)

ce qui équivalent a
3na+6b = n2n+1)
(An+2)a+6b = 3n(n+1)

En résolvant le systéme on obtient a = n et b = —%. Ce qui donne que Qs = nX — Ll)
et donc | By = 6X? — 6nX +n(n—1)|
9. Soit R € Ry_1[X], on pose U = Bi(n — X). On a
(U|R) = Z U@R() = Be(n—)R() = > B()R(n—j) = (BilS) =0
i=0 Jj=0

car S = R(n — X) € Ry_1[X].
On en déduit que U € Fy. Cet espace étant de dimension 1, B(n — X) est colinéaire a By. Comme
de plus son coefficient dominant est (—1)*, on obtient que | By(n — X) = (—=1)*Bi(X)|.

10. a) Pour tout k € [0,n], on pose C} = ”B r- Pour tout k € 0,n], la famille (Co,...,Cy) est

une base orthonormée de R;[X]. Le polynome Py étant le projeté orthogonal sur R;[X] du
polynome Y,

k k
Y|B;
P, = Z<Y|Ci>ci = Z <<B‘|B>> B;
i=0 i=0 T
b) On en déduit que
k
{Y|B)
=Yg B e g B

i=0 7’

De méme Y = P, = Z %ﬁg B; donc my, = [|Y — B> = %. On en déduit que
i= i 1 ‘
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11. a)

Soit k € [1,n — 1], X By € Ry41][X]. On peut le décomposer dans la base (By, ..., Bry1) donc

ket 1
il existe (\;)ocj<kt1 tels que | X By = > \;B;
i=0

X By|B;
Par la méme méthode que ci-dessus, | \; = —< HBk |||2J )
J

Soit P, ) et R des polynomes tels que PQ et QR sont de degré au plus n.

(PQIR) =} PGIQU)RG) = (PIQR)

Soit k € [2,n— 1] et j € [0,k — 2].
(XBy|Bj) = (Bi|XB;) =0
La derniere égalité vient du fait que deg(XB;) =j+ 1<k — 1.
(X By|B;)
1B;]]?
X By = Y Brt1 + BeBr + . Br—1

On sait que le coefficient dominant de X B, est (Qkk) Donc X B, = (Qkk) XHF1 4 Ry ott deg(Ry) <
k. De méme comme deg(By_1) < deg(By) < k. Le coefficient du monome de degré k + 1 du

On vient de voir que pour j <k —2, \; = = 0. On en déduit que

polynome de droite de 1’égalité ci-dessus est 4 (Q:Jff)
%) k1
On en déduit que |y = %’jﬂ =
( A ) 4k + 2
o k+1 5
On en déduit que (X Bg|Bg+1) = Y (Bgt1|Br+1) + 0 = 4/€—+2||Bk+1“ :

On a
(n — X)Bk(n — X) = ’YkBk—&-l(n — X) + ﬁkBk(n — X) + oszk,_l(n — X)

En utilisant le résultat de la question 9) et en divisant par (—1)* on obtient que

(n — X).By = =y Br+1 + BBr — apBr_1

En ajoutant la relation initiale, on a donc 20, By, = nBj. On en déduit que | 5 =

N3

On voit que
(XBi| By-1) = 0+ 0+ a|| B ||*

De plus
(X By| Bi_1) = (Bi| XBy_1) = 1| Bel® + Br_1(Bx| Br_1) + ax_1(Bx| Bi_2)

On en déduit que
IBell* _ kB
|Br-1ll* 4k = 2([Be-a?

En regroupant les résultats on a donc en multipliant par 2,

A = V-1 |

k+1 ko ||Bl
2XBy = ——B B B,
A k1 T 10 k+2k‘—1||Bk_1||2 k—1
Dou 2%+ 1 Eo B
+ k
Bjy1 = 2X —n)By, — By
SAR P | (( n) B 2% — 1B 2" 1)
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