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Exercice

1. Soit 𝑋 une variable aléatoire discrète. On pose 𝑓 : 𝑥 ↦→ 𝑒𝑡𝑥. D’après le cours 𝑒𝑡𝑋 = 𝑓(𝑋) est une
variable aléatoire discrète.

On suppose de plus que 𝑋 est bornée par un réel 𝛼. Pour tout 𝜔 ∈ Ω,

|𝑒𝑡𝑋(𝜔)| ⩽ 𝑒|𝑡| |𝑋(𝜔)| ⩽ 𝑒𝛼|𝑡|

On en déduit que 𝑒𝑡𝑋 est d’espérance finie.

2. a) La fonction 𝜑 : 𝑢 ↦→ 𝑒𝑢 est de classe C 2 et 𝜑′′ : 𝑢 ↦→ 𝑒𝑢. Cela montre que 𝜑′′ ⩾ 0 et donc 𝜑 est
convexe.

b) Soit 𝑥 ∈ [−1, 1], posons 𝜆 = 1+𝑥
2

∈ [0, 1]. On a 1− 𝜆 = 1−𝑥
2
.

Par convexité de 𝜑,

𝜆𝜑(𝑡) + (1− 𝜆)𝜑(−𝑡) ⩾ 𝜑(𝜆𝑡+ (1− 𝜆)× (−𝑡))

Comme 𝜆𝑡+ (1− 𝜆)× (−𝑡) = 𝑡× 1 + 𝑥

2
− 𝑡× 1− 𝑥

2
= 𝑡𝑥, on a :

𝑒𝑡𝑥 ⩽ 𝜆𝑒𝑡 + (1− 𝜆)𝑒−𝑡

c) En utilisant ce qui précède, 𝑒𝑡𝑋 ⩽
1 +𝑋

2
𝑒𝑡 +

1−𝑋

2
𝑒−𝑡.

Par croissance de l’espérance,

𝐿𝑋(𝑡) = E(𝑒𝑡𝑋) ⩽ 𝑒𝑡E

(︂
1 +𝑋

2

)︂
+ 𝑒−𝑡E

(︂
1−𝑋

2

)︂
= ch(𝑡) +

𝑒𝑡 − 𝑒−𝑡

2
E(𝑋)

Comme 𝑋 est centrée, 𝐿𝑋(𝑡) ⩽ ch(𝑡).

d) D’après le cours,

ch(𝑢) =
+∞∑︁
𝑛=0

𝑢2𝑛

(2𝑛)!
et exp

(︂
𝑢2

2

)︂
=

+∞∑︁
𝑛=0

𝑢2𝑛

2𝑛 × 𝑛!

e) Montrons par récurrence que pour tout 𝑛 ∈ N, 2𝑛 × 𝑛! ⩽ (2𝑛)!.
— Initialisation. Pour 𝑛 = 0, 20 × 0! = 1 ⩽ 0!.
— Hérédité. Soit 𝑛 ∈ N, on suppose que 2𝑛 × 𝑛! ⩽ (2𝑛)!. On a alors

2𝑛+1 × (𝑛+ 1)! = 2× (𝑛+ 1)× 2𝑛 × 𝑛! ⩽ (2𝑛)!× (2𝑛+ 2) ⩽ (2𝑛+ 2)!

Par récurrence, on obtient que pour tout 𝑛 ∈ N, 2𝑛 × 𝑛! ⩽ (2𝑛)!.

f) En utilisant les question 2.c) et 2.d) on obtient que

𝐿𝑋(𝑡) ⩽ ch(𝑡) =
+∞∑︁
𝑛=0

𝑡2𝑛

(2𝑛)!
⩽

+∞∑︁
𝑛=0

𝑡2𝑛

2𝑛 × 𝑛!
= exp

(︂
𝑡2

2

)︂
3. a) Soit 𝑖 ∈ N*. On pose 𝑌𝑖 =

𝑋𝑖

𝛼𝑖
. La variable aléatoire 𝑌𝑖 est bornée et centrée. En utilisant la

question 2.f),

𝐿𝑋𝑖
(𝑡) = E(𝑒𝑡𝑋𝑖) = E(𝑒𝑡𝛼𝑖𝑌𝑖) = 𝐿𝑌𝑖

(𝑡𝛼𝑖) ⩽ exp

(︂
𝛼2
𝑖 𝑡

2

2

)︂
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b) Soit 𝑛 ∈ N*,

𝐿𝑆𝑛(𝑡) = E(𝑒𝑡𝑆𝑛) = E(𝑒𝑡𝑋1 · · · 𝑒𝑡𝑋𝑛)
indep.
= E(𝑒𝑡𝑋1) · · ·E(𝑒𝑡𝑋𝑛) =

𝑛∏︁
𝑖=1

𝐿𝑋𝑖
(𝑡)

En effet les variables 𝑒𝑡𝑋1 , . . . , 𝑒𝑡𝑋𝑛 sont indépendantes par le lemme des coalitions. En utilisant
la question 3.a)

𝐿𝑆𝑛(𝑡) ⩽
𝑛∏︁

𝑖=1

exp

(︂
𝛼2
𝑖 𝑡

2

2

)︂
= exp

(︂
𝑡2

2
𝛽𝑛

)︂
c) Comme 𝑥 ↦→ 𝑒𝑡𝑥 est croissante, pour 𝜔 ∈ Ω, si 𝑆𝑛(𝜔) ⩾ 𝜀 alors 𝑒𝑡𝑆𝑛 ⩾ 𝑒𝑡𝜀. On en déduit que

(𝑆𝑛 ⩾ 𝜀) ⊂ (𝑒𝑡𝑆𝑛 ⩾ 𝑒𝑡𝜀)

On en déduit que
P(𝑆𝑛 ⩾ 𝜀) ⩽ P(𝑒𝑡𝑆𝑛 ⩾ 𝑒𝑡𝜀)

Comme la variable aléatoire 𝑒𝑡𝑆𝑛 est positive, par l’inégalité de Markov,

P(𝑒𝑡𝑆𝑛 ⩾ 𝑒𝑡𝜀) ⩽
E(𝑒𝑡𝑆𝑛)

𝑒𝑡𝜀
=

𝐿𝑆𝑛(𝑡)

𝑒𝑡𝜀

Finalement, en utilisant la question précédente,

P(𝑆𝑛 ⩾ 𝜀) ⩽
𝐿𝑆𝑛(𝑡)

𝑒𝑡𝜀
⩽ exp

(︂
−𝑡𝜀+

𝑡2

2
𝛽𝑛

)︂
4. Notons ℎ : 𝑡 ↦→ −𝑡𝜀 + 𝑡2

2
𝛽𝑛. Elle est dérivable et ℎ′(𝑡) = −𝜀 + 𝑡𝛽𝑛. La fonction ℎ atteint son

minimum en 𝑡 = 𝜀
𝛽𝑛
. On peut donc appliquer le résultat de la question 3.c avec 𝑡 = 𝜀

𝛽𝑛
et on

obtient

P(𝑆𝑛 ⩾ 𝜀) ⩽ exp

(︂
− 𝜀

𝛽𝑛

× 𝜀+
𝜀2

2𝛽2
𝑛

× 𝛽𝑛

)︂
= exp

(︂
− 𝜀2

2𝛽𝑛

)︂
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Problème

Partie I

1. a) Soit 𝑃 ∈ R𝑘[𝑋]. Le polynôme 𝑃 appartient à Ker(𝜙𝑘) si et seulement si 𝑃 (0) = 𝑃 (1) = . . . =
𝑃 (𝑛) = 0. On en déduit que 𝑃 a au moins 𝑛+1 racines. Comme 𝑃 est de degré au plus 𝑘 ⩽ 𝑛,

𝑃 est le polynôme nul. On a donc Ker(𝜙𝑘) = {0} . On en déduit que 𝜙𝑘 est injective.

b) On utilise le théorème du rang qui affirme que rg(𝜙𝑘) = dim(R𝑘[𝑋])− dim(Ker(𝜙𝑘)). D’après
ce qui précède, rg(𝜙𝑘) = dim(R𝑘[𝑋]) = 𝑘 + 1.

c) On a montré que 𝜙𝑘 est injectif. De plus, il est surjectif si et seulement 𝑘+1 = 𝑛+1. Finalement

𝜙𝑘 est un isomorphisme si et seulement si 𝑘 = 𝑛 .

2. a) D’après la question 1.c) l’application 𝜙𝑛 est un isomorphisme de R𝑛[𝑋] dans R𝑛+1. De ce
fait (𝑦0, . . . , 𝑦𝑛) ∈ R𝑛+1 a un unique antécédent par 𝜙𝑛 ce qui signifie qu’il existe un unique
polynôme 𝑌 tel que 𝜙𝑛(𝑌 ) = (𝑦0, . . . , 𝑦𝑛) c’est-à-dire tel que pour tout 𝑖 ∈ [[0, 𝑛]], 𝑌 (𝑖) = 𝑦𝑖.

b) Soit 𝑗 ∈ [[0, 𝑛]] on peut poser 𝑥0 = · · · = 𝑥𝑗−1 = 𝑥𝑗+1 = · · · = 𝑥𝑛 = 0 et 𝑥𝑗 = 1. En appliquant
la question précédente, il existe un unique polynôme 𝐿𝑗 ∈ R𝑛[𝑋] tel que pour tout 𝑖 ∈ [[0, 𝑛]],
𝐿𝑗(𝑖) = 𝑥𝑖 = 𝛿𝑖,𝑗.

c) On reconnait la base des polynômes de Lagrange. On voit que c’est une famille de 𝑛 + 1
polynômes de R𝑛[𝑋] qui est de dimension 𝑛+1. Il suffit donc de montrer que c’est une famille
libre. Soit (𝜆𝑖)0⩽𝑖⩽𝑛 des scalaires tels que 𝜆0𝐿0 + · · ·+ 𝜆𝑛𝐿𝑛 = 0R𝑛[𝑋]. En évaluant en 𝑖 ∈ [[0, 𝑛]]
on obtient

𝑛∑︁
𝑗=0

𝜆𝑗𝐿𝑗(𝑖) = 0R𝑛[𝑋](𝑖) ⇐⇒ 𝜆𝑖 = 0

Cela montre que la famille (𝐿0, . . . , 𝐿𝑛) est libre ; c’est donc une base .

d) Soit 𝑃 ∈ R𝑛[𝑋]. On le décompose dans la base L : 𝑃 =
𝑛∑︀

𝑗=0

𝜆𝑗𝐿𝑗. En évaluant en 0, 1, . . . on

obtient que pour tout 𝑗 ∈ [[0, 𝑛]], 𝑃 (𝑗) = 𝜆𝑗𝐿𝑗(𝑗) = 𝜆𝑗. On a donc 𝑃 =
𝑛∑︀

𝑗=0

𝑃 (𝑗)𝐿𝑗 .

3. On suppose que 𝑘 = 𝑛. Pour tout polynôme 𝑃 ∈ R𝑛[𝑋], ∆(𝑃 ) =
𝑛∑︀

𝑖=0

(𝑦𝑖−𝑃 (𝑖))2 ⩾ 0. De plus pour

le polynôme 𝑌 défini ci-dessus, ∆(𝑌 ) = 0. On en déduit que 𝑚0 existe et vaut 0.

Partie II

4. Montrons que ⟨ | ⟩ est un produit scalaire.

— Pour tout (𝑃,𝑄) ∈ R𝑛[𝑋]2, ⟨𝑃 |𝑄⟩ =
𝑛∑︀

𝑖=0

𝑃 (𝑖)𝑄(𝑖) = ⟨𝑄|𝑃 ⟩.

— Soit 𝑃 ∈ R𝑛[𝑋]. Soit 𝑄1, 𝑄2 dans R𝑛[𝑋] et 𝜆1, 𝜆2 dans R.

⟨𝑃 |𝜆1𝑄1 + 𝜆2𝑄2⟩ =
𝑛∑︁

𝑖=0

𝑃 (𝑖)(𝜆1𝑄1(𝑖) + 𝜆2𝑄2(𝑖)) = 𝜆1⟨𝑃 |𝑄1⟩+ 𝜆2⟨𝑃 |𝑄2⟩

On en déduit que ⟨ | ⟩ est linéaire à droite et donc bilinéaire par symétrie.

— Soit 𝑃 ∈ R𝑛[𝑋], ⟨𝑃 |𝑃 ⟩ =
𝑛∑︀

𝑖=0

𝑃 (𝑖)2 ⩾ 0.
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— Soit 𝑃 ∈ R𝑛[𝑋]. On suppose que ⟨𝑃 |𝑃 ⟩ =
𝑛∑︀

𝑖=0

𝑃 (𝑖)2 = 0. C’est une somme de nombres positifs

qui est nulle. On en déduit que pour tout 𝑖 ∈ [[0, 𝑛]], 𝑃 (𝑖)2 = 0 et donc 𝑃 (𝑖) = 0. Le polynôme
𝑃 a donc au moins 𝑛+ 1 racines, comme il est de degré au plus 𝑛, c’est le polynôme nul.

On a bien montré que ⟨ | ⟩ est un produit scalaire.

5. a) Soit (𝑖, 𝑗) ∈ [[0, 𝑛]]2 avec 𝑖 ̸= 𝑗,

⟨𝐿𝑖| 𝐿𝑗⟩ =
𝑛∑︁

𝑘=0

𝐿𝑖(𝑘)𝐿𝑗(𝑘) = 𝐿𝑗(𝑖) = 0

La deuxième égalité venant du fait que 𝐿𝑖(𝑘) = 0 si 𝑘 ̸= 𝑖. La famille L est donc orthogonale.

Soit 𝑖 ∈ [[0, 𝑛]],

‖𝐿𝑖‖ =
√︀
⟨𝐿𝑖| 𝐿𝑖⟩ =

⎯⎸⎸⎷ 𝑛∑︁
𝑘=0

𝐿2
𝑖 (𝑘) = 1

Cela montre que L est une famille orthonormée.

b) On voit que

⟨1|1⟩ =
𝑛∑︁

𝑖=0

1 = 𝑛+ 1 et ⟨1|𝑋⟩ =
𝑛∑︁

𝑖=0

1× 𝑖 = 𝑛(𝑛+1)
2

c) Montrons par récurrence que pour tout entier 𝑁 ∈ N*, 𝑆𝑁 =
𝑁∑︀
𝑝=1

𝑝2 = 𝑁(𝑁+1)(2𝑁+1)
6

. Le cas

𝑁 = 1 est évident. Supposons que la propriété est vraie pour un entier 𝑁 ⩾ 1 et démontrons-la
pour 𝑁 + 1.

𝑆𝑁+1 = 𝑆𝑁 + (𝑁 + 1)2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
+ (𝑁 + 1)2 =

(𝑁 + 1)(𝑁(2𝑁 + 1) + 6(𝑁 + 1))

6

Or 𝑁(2𝑁 + 1) + 6(𝑁 + 1)) = 2𝑁2 + 7𝑁 + 6 = (𝑁 + 2)(2𝑁 + 3). On en déduit que

𝑆𝑁+1 =
(𝑁 + 1)(𝑁 + 2)(2𝑁 + 3)

6

Cela achève la récurrence.

On en déduit que

⟨𝑋|𝑋⟩ =
𝑛∑︁

𝑖=0

𝑖2 =
𝑛(𝑛+ 1)(2𝑛+ 1)

6

6. a) Soit 𝑃 ∈ R𝑛[𝑋],

‖𝑌 − 𝑃‖2 = ⟨𝑌 − 𝑃 |𝑌 − 𝑃 ⟩ =
𝑛∑︁

𝑖=0

(𝑌 (𝑖)− 𝑃 (𝑖))2 =
𝑛∑︁

𝑖=0

(𝑦𝑖 − 𝑃 (𝑖))2 = ∆(𝑃 )

b) On voit que

min{∆(𝑃 ) , 𝑃 ∈ R𝑘[𝑋]} = min{‖𝑌 − 𝑃‖2 , 𝑃 ∈ R𝑘[𝑋]} = (𝑑(𝑃,R𝑘[𝑋]))2

Il existe donc un unique polynôme 𝑃𝑘 qui est le projeté orthogonal de 𝑌 sur R𝑘[𝑋] tel que
𝑚𝑘 = ‖𝑌 − 𝑃𝑘‖2 = ∆(𝑃𝑘).

En particulier, 𝑌 − 𝑃𝑘 appartient à l’orthogonal de R𝑘[𝑋].
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c) On cherche 𝑃0 ∈ R0[𝑋] tel que 𝑌 − 𝑃0 soit orthogonal à R0[𝑋] = Vect(1). On pose 𝑃0 = 𝑎1. Il
doit vérifier que ⟨𝑌 − 𝑃0|1⟩ = 0 c’est-à-dire ⟨𝑃0|1⟩ = ⟨𝑌 |1⟩. Or ⟨𝑃0|1⟩ = 𝑎⟨1|1⟩ = (𝑛 + 1)𝑎 et

⟨𝑌 |1⟩ =
𝑛∑︀

𝑖=0

𝑦𝑖. Finalement 𝑃0 =
1

𝑛+ 1

𝑛∑︀
𝑖=0

𝑦𝑖 .

De plus comme 𝑌 − 𝑃0 ⊥ 𝑃0, ‖𝑌 ‖2 = ‖𝑃0‖2 + ‖𝑌 − 𝑃0‖2 ce qui implique

𝑚0 = ‖𝑌 − 𝑃0‖2 = ‖𝑌 ‖2 − ‖𝑃0‖2 =
𝑛∑︁

𝑖=0

𝑦2𝑖 −
1

(𝑛+ 1)2

(︃
𝑛∑︁

𝑖=1

𝑦𝑖

)︃2

d) On voit que

⟨𝑌 |1⟩ =
𝑛∑︁

𝑖=0

𝑦𝑖 = 𝑞− 𝑞 = 0 et ⟨𝑌 |𝑋⟩ =
𝑛∑︁

𝑖=0

𝑖𝑦𝑖 =

𝑞−1∑︁
𝑖=0

𝑖−
2𝑞−1∑︁
𝑖=𝑞

𝑖 =
(𝑞 − 1)𝑞

2
− 𝑞(3𝑞 − 1)

2
= −𝑞2

On calcule le projeté orthogonal 𝑃1 de 𝑌 sur R1[𝑋]. On pose 𝑃1 = 𝑎𝑋 + 𝑏. En procédant
comme ci-dessus, on obtient que 𝑎, 𝑏 vérifie le système{︂

𝑎⟨𝑋|1⟩+ 𝑏⟨1|1⟩ = ⟨𝑌 |1⟩
𝑎⟨𝑋|𝑋⟩+ 𝑏⟨1|𝑋⟩ = ⟨𝑌 |𝑋⟩

C’est-à-dire le système⎧⎪⎨⎪⎩
𝑛(𝑛+ 1)

2
𝑎+ (𝑛+ 1)𝑏 = 0

𝑛(𝑛+ 1)(2𝑛+ 1)

6
𝑎+

𝑛(𝑛+ 1)

2
𝑏 = −𝑞2 = −(𝑛+ 1)2

4

Il est équivalent à {︂
𝑛𝑎+ 2𝑏 = 0

2𝑛(2𝑛+ 1)𝑎+ 6𝑛𝑏 = −3(𝑛+ 1)

On en déduit que 𝑎 = − 3(𝑛+ 1)

𝑛(𝑛+ 2)
et 𝑏 =

3(𝑛+ 1)

2(𝑛+ 2)
.

Finalement 𝑃1 = − 3(𝑛+ 1)

𝑛(𝑛+ 2)
𝑋 +

3(𝑛+ 1)

2(𝑛+ 2)
= − 3(𝑛+ 1)

2𝑛(𝑛+ 2)
(2𝑋 − 𝑛)

Partie III

7. Comme dim(R𝑘[𝑋]) = 𝑘 + 1 et que dim(R𝑘−1[𝑋]) = 𝑘, dim(𝐹𝑘) = 1.

8. a) Soit 𝑅 ∈ R𝑘−1[𝑋]. D’après la condition ii), (𝐵0, . . . , 𝐵𝑘−1) est une base de R𝑘−1[𝑋] donc il

existe une famille de scalaires (𝛼𝑖)0⩽𝑖⩽𝑘−1 telle que 𝑅 =
𝑘−1∑︀
𝑖=0

𝛼𝑖𝑋
𝑖. La famille (𝐵0, . . . , 𝐵𝑘) étant

orthogonale on obtient que ⟨𝐵𝑘| 𝑅⟩ =
𝑘−1∑︀
𝑖=0

𝛼𝑖⟨𝐵𝑘|𝐵𝑖⟩ = 0

De même, par définition du projeté orthogonal 𝑋𝑘 −𝑄𝑘 ∈ R𝑘−1[𝑋]⊥ donc ⟨𝑋𝑘 −𝑄𝑘| 𝑅⟩ = 0.

On vient de monter que 𝐵𝑘 et 𝑋𝑘 − 𝑄𝑘 appartiennent à 𝐹𝑘 qui est de dimension 1. Les deux
polynômes sont donc colinéaires.
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b) La question précédente montre qu’une si une famille (𝐵0, . . . , 𝐵𝑛) vérifie les trois conditions
alors 𝐵0 = 1 et pour 𝑘 ∈ [[1, 𝑛]], 𝐵𝑘 =

(︀
2𝑘
𝑘

)︀
(𝑋𝑘 −𝑄𝑘).

Réciproquement cette famille vérifie les conditions i) et iii) de manière évidente. De plus si
0 ⩽ 𝑘 < 𝑘′ ⩽ 𝑛 alors 𝐵𝑘 ∈ R𝑘[𝑋] ⊂ R𝑘′−1[𝑋] et 𝐵𝑘′ ∈ R𝑘′−1[𝑋]⊥. On en déduit que
⟨𝐵𝑘| 𝐵𝑘′⟩ = 0. La condition ii) est vérifiée puisque de plus une famille orthogonale de vecteurs
non nuls est libre et donc (𝐵0, . . . , 𝐵𝑘) est une base de R𝑘[𝑋].

c) On procède comme à la fin de la partie II pour calculer 𝑄1 et 𝑄2.

Le polynôme 𝑄1 est le projeté orthogonal de 𝑋 sur R0[𝑋] = Vect(1). Il est de la forme 𝑄1 = 𝑎1.

De plus 𝑋 − 𝑄1 ⊥ 1 ce qui implique que ⟨𝑋|1⟩ − 𝑎⟨1|1⟩ = 0 ⇐⇒ 𝑛(𝑛+ 1)

2
− 𝑎(𝑛 + 1) = 0.

On obtient 𝑄1 =
𝑛
2

puis 𝐵1 =
(︀
2
1

)︀
(𝑋 −𝑄1) = 2𝑋 − 𝑛 .

De même, le polynôme 𝑄2 est le projeté orthogonal de 𝑋
2 sur R1[𝑋] = Vect(1, 𝑋). Il est de la

forme 𝑄2 = 𝑎𝑋 + 𝑏. De plus 𝑋2 −𝑄2 ⊥ 1 et 𝑋2 −𝑄2 ⊥ 𝑋 ce qui implique que{︂
⟨1|𝑋⟩𝑎+ ⟨1|1⟩𝑏 = ⟨1|𝑋2⟩

⟨𝑋|𝑋⟩𝑎+ ⟨𝑋|1⟩𝑏 = ⟨𝑋|𝑋2⟩

ce qui équivalent à {︂
3𝑛𝑎+ 6𝑏 = 𝑛(2𝑛+ 1)

(4𝑛+ 2)𝑎+ 6𝑏 = 3𝑛(𝑛+ 1)

En résolvant le système on obtient 𝑎 = 𝑛 et 𝑏 = −𝑛(𝑛−1)
6

. Ce qui donne que 𝑄2 = 𝑛𝑋 − 𝑛(𝑛−1)
6

et donc 𝐵2 = 6𝑋2 − 6𝑛𝑋 + 𝑛(𝑛− 1) .

9. Soit 𝑅 ∈ R𝑘−1[𝑋], on pose 𝑈 = 𝐵𝑘(𝑛−𝑋). On a

⟨𝑈 |𝑅⟩ =
𝑛∑︁

𝑖=0

𝑈(𝑖)𝑅(𝑖) =
𝑛∑︁

𝑖=0

𝐵𝑘(𝑛− 𝑖)𝑅(𝑖) =
𝑗=𝑛−𝑖

𝑛∑︁
𝑗=0

𝐵𝑘(𝑗)𝑅(𝑛− 𝑗) = ⟨𝐵𝑘|𝑆⟩ = 0

car 𝑆 = 𝑅(𝑛−𝑋) ∈ R𝑘−1[𝑋].

On en déduit que 𝑈 ∈ 𝐹𝑘. Cet espace étant de dimension 1, 𝐵𝑘(𝑛−𝑋) est colinéaire à 𝐵𝑘. Comme

de plus son coefficient dominant est (−1)𝑘, on obtient que 𝐵𝑘(𝑛−𝑋) = (−1)𝑘𝐵𝑘(𝑋) .

10. a) Pour tout 𝑘 ∈ [[0, 𝑛]], on pose 𝐶𝑘 = 𝐵𝑘

‖𝐵𝑘‖
. Pour tout 𝑘 ∈ [0, 𝑛]], la famille (𝐶0, . . . , 𝐶𝑘) est

une base orthonormée de R𝑘[𝑋]. Le polynôme 𝑃𝑘 étant le projeté orthogonal sur R𝑘[𝑋] du
polynôme 𝑌 ,

𝑃𝑘 =
𝑘∑︁

𝑖=0

⟨𝑌 |𝐶𝑖⟩𝐶𝑖 =
𝑘∑︁

𝑖=0

⟨𝑌 |𝐵𝑖⟩
⟨𝐵𝑖|𝐵𝑖⟩

𝐵𝑖

b) On en déduit que

𝑃𝑘 =
𝑘∑︁

𝑖=0

⟨𝑌 |𝐵𝑖⟩
‖𝐵𝑖‖2

𝐵𝑖 = 𝑃𝑘−1 +
⟨𝑌 |𝐵𝑘⟩
‖𝐵𝑘‖2

𝐵𝑘

De même 𝑌 = 𝑃𝑛 =
𝑛∑︀

𝑖=0

⟨𝑌 |𝐵𝑖⟩
‖𝐵𝑖‖2 𝐵𝑖 donc 𝑚𝑘 = ‖𝑌 − 𝑃𝑘‖2 =

𝑛∑︀
𝑖=𝑘+1

⟨𝑌 |𝐵𝑖⟩2
‖𝐵𝑖‖2 . On en déduit que

𝑚𝑘 = 𝑚𝑘−1 −
⟨𝑌 |𝐵𝑘⟩2

‖𝐵𝑘‖2
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11. a) Soit 𝑘 ∈ [[1, 𝑛− 1]], 𝑋𝐵𝑘 ∈ R𝑘+1[𝑋]. On peut le décomposer dans la base (𝐵0, . . . , 𝐵𝑘+1) donc

il existe (𝜆𝑗)0⩽𝑗⩽𝑘+1 tels que 𝑋𝐵𝑘 =
𝑘+1∑︀
𝑗=0

𝜆𝑗𝐵𝑗

Par la même méthode que ci-dessus, 𝜆𝑗 =
⟨𝑋𝐵𝑘|𝐵𝑗⟩
‖𝐵𝑗‖2

b) Soit 𝑃,𝑄 et 𝑅 des polynômes tels que 𝑃𝑄 et 𝑄𝑅 sont de degré au plus 𝑛.

⟨𝑃𝑄|𝑅⟩ =
𝑛∑︁

𝑖=0

𝑃 (𝑖)𝑄(𝑖)𝑅(𝑖) = ⟨𝑃 |𝑄𝑅⟩

c) Soit 𝑘 ∈ [[2, 𝑛− 1]] et 𝑗 ∈ [[0, 𝑘 − 2]].

⟨𝑋𝐵𝑘|𝐵𝑗⟩ = ⟨𝐵𝑘|𝑋𝐵𝑗⟩ = 0

La dernière égalité vient du fait que deg(𝑋𝐵𝑗) = 𝑗 + 1 ⩽ 𝑘 − 1.

d) On vient de voir que pour 𝑗 ⩽ 𝑘 − 2, 𝜆𝑗 =
⟨𝑋𝐵𝑘|𝐵𝑗⟩
‖𝐵𝑗‖2

= 0. On en déduit que

𝑋𝐵𝑘 = 𝛾𝑘𝐵𝑘+1 + 𝛽𝑘𝐵𝑘 + 𝛼𝑘𝐵𝑘−1

e) On sait que le coefficient dominant de 𝑋𝐵𝑘 est
(︀
2𝑘
𝑘

)︀
. Donc 𝑋𝐵𝑘 =

(︀
2𝑘
𝑘

)︀
𝑋𝑘+1+𝑅𝑘 où deg(𝑅𝑘) ⩽

𝑘. De même comme deg(𝐵𝑘−1) ⩽ deg(𝐵𝑘) ⩽ 𝑘. Le coefficient du monôme de degré 𝑘 + 1 du
polynôme de droite de l’égalité ci-dessus est 𝛾𝑘

(︀
2𝑘+2
𝑘+1

)︀
.

On en déduit que 𝛾𝑘 =

(︀
2𝑘
𝑘

)︀(︀
2𝑘+2
𝑘+1

)︀ =
𝑘 + 1

4𝑘 + 2

f) On en déduit que ⟨𝑋𝐵𝑘|𝐵𝑘+1⟩ = 𝛾𝑘⟨𝐵𝑘+1|𝐵𝑘+1⟩+ 0 =
𝑘 + 1

4𝑘 + 2
‖𝐵𝑘+1‖2 .

g) On a
(𝑛−𝑋).𝐵𝑘(𝑛−𝑋) = 𝛾𝑘𝐵𝑘+1(𝑛−𝑋) + 𝛽𝑘𝐵𝑘(𝑛−𝑋) + 𝛼𝑘𝐵𝑘−1(𝑛−𝑋)

En utilisant le résultat de la question 9) et en divisant par (−1)𝑘 on obtient que

(𝑛−𝑋).𝐵𝑘 = −𝛾𝑘𝐵𝑘+1 + 𝛽𝑘𝐵𝑘 − 𝛼𝑘𝐵𝑘−1

En ajoutant la relation initiale, on a donc 2𝛽𝑘𝐵𝑘 = 𝑛𝐵𝑘. On en déduit que 𝛽𝑘 =
𝑛
2

h) On voit que
⟨𝑋𝐵𝑘| 𝐵𝑘−1⟩ = 0 + 0 + 𝛼𝑘‖𝐵𝑘−1‖2

De plus

⟨𝑋𝐵𝑘| 𝐵𝑘−1⟩ = ⟨𝐵𝑘| 𝑋𝐵𝑘−1⟩ = 𝛾𝑘−1‖𝐵𝑘‖2 + 𝛽𝑘−1⟨𝐵𝑘| 𝐵𝑘−1⟩+ 𝛼𝑘−1⟨𝐵𝑘| 𝐵𝑘−2⟩

On en déduit que

𝛼𝑘 = 𝛾𝑘−1
‖𝐵𝑘‖2

‖𝐵𝑘−1‖2
=

𝑘

4𝑘 − 2

‖𝐵𝑘‖2

‖𝐵𝑘−1‖2
En regroupant les résultats on a donc en multipliant par 2,

2𝑋𝐵𝑘 =
𝑘 + 1

2𝑘 + 1
𝐵𝑘+1 + 𝑛𝐵𝑘 +

𝑘

2𝑘 − 1

‖𝐵𝑘‖2

‖𝐵𝑘−1‖2
𝐵𝑘−1

D’où

𝐵𝑘+1 =
2𝑘 + 1

𝑘 + 1

(︂
(2𝑋 − 𝑛)𝐵𝑘 −

𝑘

2𝑘 − 1

‖𝐵𝑘‖2

‖𝐵𝑘−1‖2
𝐵𝑘−1

)︂
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