
MP1 / MP2 Devoir Surveillé 5 - Corrigé 2025 – 2026

I - Préliminaires : étude de quelques éléments de E

I.A - Des fonctions de E utiles pour la suite

Q.1 Soit α ∈ R∗
+. On voit d’abord que pα est continue sur ]0,+∞[.

On pose hα : t 7→ (pα(t))2e−t

t
= t2α−1e−t. Elle est continue sur ]0,+∞[ et positive.

• Au voisinage de 0, hα(t) ∼
0
t2α−1 =

1

t1−2α
⩾ 0.

Comme t 7→ 1
t1−2α est intégrable sur ]0, 1], puisque 1 − 2α < 1, la fonction hα est

intégrable sur ]0, 1].

• Au voisinage de +∞, t2α−1e−t = o
(

1
t2

)
car t2α+1e−t tend vers 0 en +∞ par croissance

comparée. Comme t 7→ 1
t2

est intégrable sur [1,+∞[, hα aussi.

Finalement, hα ∈ E.

Q.2 Soit P une fonction polynomiale. Elle est continue sur ]0,+∞[.

On pose h : t 7→ (P (t))2e−t

t
qui est continue sur ]0,+∞[.

• Si P (0) ̸= 0, on voit que h(t) ∼
0

P 2(0)
t

, cette fonction garde un signe constant. La

fonction t 7→ 1
t
n’est pas intégrable sur ]0, 1], on peut donc en utilisant le critère de

comparaison des fonctions positives dire que h n’est pas intégrable sur ]0, 1]. Cela

montre que P /∈ E.

• Si P (0) = 0. On obtient que P (t) = O
0
(t) et donc h(t) = O

0
(t). En particulier h est

prolongeable par continuité en 0 donc intégrable sur ]0, 1]. De plus, en procédant

comme ci-dessus, h(t) = o
+∞

( 1
t2
) ce qui permet là encore de montrer que h est

intégrable sur [1,+∞[. En conclusion, P ∈ E.

Q.3 Si a = b = 0, la fonction est nulle et 0̃ ∈ E.

Réciproquement, supposons que a ̸= 0, au voisinage de +∞, on a

(aet + b)2e−t

t
∼ a2et

t

t→+∞−−−−→ +∞

La fonction n’est pas intégrable sur [1,+∞[. La première condition d’intégrabilité est que

a = 0.

Supposons que a = 0, la fonction est une fonction polynomiale constante, elle est dans E

si et seulement si b = 0.

Q.4 La fonction u : t 7→ (et−1)2e−t

t
est continue sur ]0, x], de plus

(et − 1)2e−t

t
∼
0

t2 × 1

t
= t

La fonction u est prolongeable par continuité en 0, donc intégrable sur ]0, x].
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Q.5 Par définition pour t ∈]0, x], kx(t) = et − 1 et kx(t) = ex − 1 pour t ∈ [x,+∞[. On

voit que kx est continue sur ]0,+∞[. On pose h : t 7→ kx(t)2e−t

t
.

D’après la question précédente k est intégrable sur ]0, x].

De plus h(t) est négligeable devant t 7→ 1
t2

en +∞. On en déduit que h est intégrable sur

[x+ 1,+∞[.

Finalement, h ∈ L1(]0,+∞[) et donc kx ∈ E.

I.B - Une condition suffisante d’appartenance à E

Q.6 Commençons par justifier que la fonction Φ est bien définie.

Soit x > 0. La fonction v : t 7→ et/2√
t
est continue sur ]0, x]. De plus v(t) ∼

0

1√
t
. La fonction

t 7→ 1√
t
est intégrable sur ]0, x] donc v aussi. Cela justifie que Φ est bien définie.

On peut écrire pour x > 0 :

Φ(x) =
4
√
xe

x
2

x+ 1
−
∫ 1

0

e
t
2

√
t
dt−

∫ x

1

e
t
2

√
t
d

Comme t 7→ et/2√
t

est continue sur [1, x[ (ou ]x, 1]) la fonction Φ est de classe C 1 sur

]0,+∞[ et pour x > 0 :

Φ′(x) = (x− 1)2
e

x
2

√
x(x+ 1)2

⩾ 0

De plus lim
x→0+

4
√
xex/2

x+ 1
= 0 et lim

x→0+

∫ x
0
et/2√
t
dt = 0 car l’intégrale converge en 0. On en déduit

que lim
x→0

Φ(x) = 0.

Comme la fonction est croissante, elle est toujours positive sur ]0,+∞[ car par théorème

de la limite monotone, lim
x→0+

Φ(x) = inf{Φ(x) , x > 0}.

Q.7 Pour x > 0, f admet 0 comme limite en 0 :

|f(x)| =
∣∣∣∣∫ x

0

f ′(t) dt

∣∣∣∣ ⩽ ∫ x

0

|f ′(t)| dt ⩽ C

∫ x

0

e
t
2

√
t
dt ⩽

4C
√
xe

x
2

x+ 1

La dernière inégalité découlant de la question précédente.

Q.8 On pose h : x 7→ f(x)2 e
−x

x
qui est continue sur ]0,+∞[. La majoration obtenue à

la question précédente permet d’obtenir que pour x > 0,

0 ⩽
f 2(x)e−x

x
⩽

16C2

(1 + x)2

La fonction t 7→ 1
(1+x)2

est intégrable sur ]0,+∞[ car continue en 0 et équivalente à t 7→ 1
t2

en +∞. Il en découle immédiatement l’intégrabilité de h, d’où f ∈ E.

II - Structure préhilbertienne de E

Q.9 Soit f , g des éléments de E, la fonction h : t 7→ f(t)g(t)e−t

t
est continue sur ]0,+∞[.

En utilisant que pour tout x, y ∈ R, |xy| ⩽ x2 + y2

2
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On peut écrire :

|h(t)| =
∣∣∣∣f(t)g(t)e−tt

∣∣∣∣ =
∣∣∣∣∣f(t)e−

t
2

√
t

∣∣∣∣∣
∣∣∣∣∣g(t)e−

t
2

√
t

∣∣∣∣∣ ⩽ 1

2

[
f 2(t)e−t

t
+
g2(t)e−t

t

]
La fonction de droite étant intégrable comme somme de fonctions intégrables, la fonction

h est intégrable.

Q.10 On voit que E est non vide car il contient la fonction nulle et qu’il est contenu

dans l’ensemble des fonctions continues sur ]0,+∞[ qui est un espace vectoriel.

Si on prend (f, g) ∈ E2, λ ∈ R :

(λf(t) + g(t))2e−t

t
= λ2

f 2(t)e−t

t
+
g2(t)e−t

t
+ 2λ

f(t)g(t)e−t

t

En utilisant la question précédente, on obtient que les trois fonctions du terme de droite

sont intégrables sur ]0,+∞[, il en découle (λf + g) ∈ E.

Finalement E est donc un sous espace vectoriel.

Q.11 L’intégrale qui définit ce produit scalaire est bien définie d’après la question Q9.

Vérifions les axiomes des produits scalaires :

• Comme le produit des réels est commutatif, pour tout f, g ∈ E, ⟨f |g⟩ = ⟨g|f⟩
• Pour f, g, h dans E et λ ∈ R, par linéarité de l’intégrale

⟨λf + g|h⟩ = λ⟨f |h⟩+ ⟨g|h⟩

La linéarité à droite s’en déduit par symétrie

• Pour f ∈ E, ⟨f |f⟩ ⩾ 0 par positivité de l’intégrale.

• Soit f ∈ E telle que ⟨f |f⟩ = 0. Comme t 7→ f 2(t)e−t

t
est positive et continue, elle

est identiquement nulle. On en déduit que f = 0̃ puisque t 7→ e−t ne s’annule pas.

C’est donc un produit scalaire.

Q.12 On veut montrer que lim
x→0

∥kx∥ = 0. Il suffit de montrer que

lim
x→0

∫ +∞

0

k2x(t)
e−t

t
dt = 0

Appliquons pour cela la version continue du théorème de convergence dominée.

• Pour tout t ∈]0,+∞[, pour x ⩽ t, kx(t) = ex − 1 −→
x→0

0. On en déduit que

lim
x→0

k2x(t)
e−t

t
= 0

• Domination au voisinage de 0. Pour x ∈]0, 1] et t ∈]0,+∞[, min(x, t) ⩽ min(1, t)

donc kx(t) ⩽ k1(t).

On en déduit que ∣∣∣∣k2x(t)e−tt
∣∣∣∣ ⩽ k21(t)

e−t

t
=: φ(t)

où φ ∈ L1(]0,+∞[) d’après la question Q5.

Par la version continue du théorème de convergence dominée,

lim
x→0

∫ +∞

0

k2x(t)
e−t

t
dt =

∫ +∞

0

0 dt = 0
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Q.13 Soit k ∈ N. La fonction t 7→ tke−t est continue sur [0,+∞[ et tke−t = o
+∞

( 1
t2
).

On en déduit que t 7→ tke−t et donc que l’intégrale
∫ +∞
0

tke−t dt converge. Notons Ik sa

valeur.

On sait que I0 = 1 et que pour k ⩾ 0, par intégration par parties,

Ik =

[
tk+1

k + 1
e−t

]+∞

0

+
1

k + 1

∫ +∞

0

tk+1e−t dt =
1

k + 1
Ik+1

où le crochet converge et vaut 0 car tk+1e−t −→
t→+∞

0.

Cela donne que Ik+1 = (k+1)Ik. Par une récurrence immédiate, pour tout k ∈ N, Ik = k!.

Q.14 Soit n,m ∈ N∗. On a

⟨pn, pm⟩ =
∫ +∞

0

tn+m
e−t

t
dt = In+m−1 = (n+m− 1)! ̸= 0

La famille (pn)n∈N∗ n’est pas orthogonale.

III - Un opérateur sur E

III.A

Q.15 Soit x > 0 En appliquant l’inégalité de Cauchy-Schwarz, on peut écrire :

0 ⩽ |U(f)(x)| ⩽ |⟨kx, f⟩| ⩽ ∥kx∥∥f∥

Il suffit d’utiliser la question Q12 pour obtenir que lim
x→0+

U(f)(x) = 0.

Q.16 Soit x > 0, par relation de Chasles

U(f)(x) =

∫ x

0

(et − 1)
f(t)e−t

t
dt+

∫ +∞

x

(ex − 1)
f(t)e−t

t
dt

=

∫ x

0

(1− e−t)
f(t)

t
dt+ (ex − 1)

∫ +∞

x

f(t)e−t

t
dt

Q.17 Comme f est continue, par le théorème fondamental de l’analyse, les fonctions

x 7→
∫ x

0

(1− e−t)
f(t)

t
dt et x 7→

∫ +∞

x

f(t)e−t

t
dt sont de classe C 1 sur R∗

+. De plus

(U(f))′(x) =
(1− e−x)f(x)

x
+ ex

∫ +∞

x

f(t)e−t

t
dt− (ex − 1)

f(x)e−x

x

= ex
∫ +∞

x

f(t)e−t

t
dt

Q.18 En utilisant encore le théorème fondamental de l’analyse, U(f)′ est de classe C 1

donc U(f) est de classe C 2 sur R∗
+. De plus

U(f)′′(x) = ex
∫ +∞

x

f(t)e−t

t
dt− ex

f(x)e−x

x
= U(f)′(x)− f(x)

x

La fonction U(f) est solution de l’équation différentielle :

y′′(x)− y′(x) = −f(x)
x
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Q.19 Soit x > 0, par inégalité triangulaire,

|U(f)′(x)| =
∣∣∣∣ex ∫ +∞

x

f(t)e−t

t
dt

∣∣∣∣ ⩽ ex
∫ +∞

x

∣∣∣∣∣f(t)e−
t
2

√
t

∣∣∣∣∣ e−
t
2

√
t
dt

En utilisant alors l’inégalité de Cauchy-Schwarz dans l’ensemble des fonctions de carré

intégrables sur [x,+∞[ muni du produit scalaire

(g, h) 7→
∫ +∞

x

g(t)h(t) dt

on obtient alors

|U(f)′(x)| ⩽ ex
(∫ +∞

x

f 2(t)e−t

t
dt

) 1
2
(∫ +∞

x

e−t

t
dt

) 1
2

⩽ ex
(∫ +∞

0

f 2(t)e−t

t
dt

) 1
2
(∫ +∞

x

e−t

x
dt

) 1
2

On a bien |U(f)′(x)| ⩽ ex∥f∥
(∫ +∞

x

e−t

t
dt

)1/2

.

De plus pour t ∈ [x,+∞[, e
−t

t
⩽ e−t

x
donc

ex∥f∥
(∫ +∞

x

e−t

t
dt

)1/2

⩽ ex∥f∥
(∫ +∞

x

e−t

x
dt

)1/2

=
ex∥f∥√

x
(e−x)1/2 = ∥f∥e

x/2

√
x

Q.20 L’application U est linéaire par linéarité de l’intégrale. De plus, en utilisant la

question Q15 et la question Q19 on est en mesure d’appliquer le résultat de la question

Q8 avec C = ∥f∥. Cela montre que U(f) ∈ E et donc U est un endomorphisme (la

continuité de U(f) étant acquise car elle est de classe C 1 d’après la question Q17.

En utilisant aussi les résultats de la question Q7 on a que pour x > 0,

|U(f)(x)| ⩽ 4∥f∥
√
xex/2

1 + x

Q.21 En utilisant le résultat précédent,

∥U(f)∥2 =
∫ +∞

0

(U(f)(t))2e−t

t
dt ⩽ 16∥f∥2

∫ +∞

0

tet

(1 + t)2
e−t

t
dt

= 16∥f∥2
∫ +∞

0

1

(1 + t)2
dt = 16∥f∥2

[
− 1

1 + t

]+∞

0

= 16∥f∥2

Finalement ∥U(f)∥ ⩽ 4∥f∥.

Q.22 Soit f ∈ Ker(U). Comme U(f) = 0̃, U ′′(f) = 0̃. En utilisant l’équation différentielle

de la question Q18, on obtient que f = 0̃. On en déduit que U est injective.

Q.23 D’après la question Q17, pour toute fonction f , U(f) est de classe C 1. Or il existe

des fonctions dans E qui ne sont pas de classe C 1 par exemple la fonction constante égale

à 0 sur ]0, 1[∪]3,+∞[, affine sur ]1, 2] et [2, 3] et valant 1 en 2. Cela montre que U n’est

pas surjective.
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III.B

Q.24 On a vu que U(f) était de classe C 2. La foncton F est donc de classe C 1. Il

suffit alors de dériver F et d’utiliser l’équation différentielle vérifiée par U(f) obtenue à

la question Q18.

Q.25 Pour x > 0,

|F (x)U(g)(x)| = |U(f)′(x)e−xU(g)(x)|

⩽ ∥f∥e
x/2

√
x
e−x4∥g∥

√
xex/2

1 + x
d’après Q19 et Q20

⩽ 4
∥f∥ ∥g∥
1 + x

Q.26 En utilisant la première majoration dans la question Q19 on a

|F (x)| ⩽
(∫ +∞

x

e−t

t
dt

) 1
2

Or, pour x ∈]0, 1[ :∫ +∞

x

e−t

t
dt =

∫ 1

x

e−t

t
dt+

∫ +∞

1

e−t

t
dt ⩽

∫ 1

x

1

t
dt+

∫ +∞

1

e−t dt = − ln(x) + e−1

Q.27 La majoration dans la question Q24 donne directement

lim
x→+∞

F (x)U(g)(x) = 0

Sur ]0, 1[, en utilisant les majorations des questions Q26 (pour F ) et Q20 (pour U(g)),

|F (x)U(g)(x)| ⩽ 4∥f∥∥g∥
(√

xe−1 − x ln(x)
) 1

2
e

x
2

x+ 1

x→0−−→ 0

Q.28 On a

⟨f |U(g)⟩ =
∫ +∞

0

U(g)(t)

(
f(t)e−t

t

)
dt =

∫ +∞

0

U(g)(t)F ′(t) dt

On effectue une intégration par parties. La question précédente permet de voir que le

crochet converge et vaut 0 donc :

⟨f |U(g)⟩ = −
∫ +∞

0

U(g)′(t)F (t) dt =

∫ +∞

0

U(g)′(t)U(f)′(t)e−t dt

Q.29 Par symétrie du produit scalaire :

⟨U(f)|g⟩ = ⟨g|U(f)⟩ =
∫ +∞

0

U(g)′(t)U(f)′(t)e−t dt = ⟨f |U(g)⟩
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IV - Solutions d’une équation différentielle développables

en série entière

Q.30 f une solution développable en série entière sur R de l’équation (Ep).

On peut dériver terme à terme à tout ordre sur ] − R,R[=] − ∞,∞[ et ainsi pour tout

x ∈ R

f(x) =
+∞∑
n=0

anx
n, f ′(x) =

+∞∑
n=1

nanx
n−1, f ′′(x) =

+∞∑
n=2

n(n− 1)anx
n−2

∀x ∈ R x
(
f ′′(x)− f ′(x)

)
+ pf(x) =

+∞∑
n=0

[n(n+ 1)an+1 − (n− p)an]x
n

Si f vérifie (Ep) alors par unicité du développement en série entière de la fonction nulle

on a :

∀n ∈ N n(n+ 1)an+1 − (n− p)an = 0

En particulier pa0 = 0 donc a0 = 0 car p ̸= 0.

Réciproquement si ces relations sont vérifiées alors f vérifie (Ep).

Q.31 Soit h est une solution polynomiale non nulle de (Ep). Alors h est développable

en série entière et il existe un entier n ∈ N∗ tel que : an ̸= 0 = an+1, car si pour un entier

k, ak = 0 on a am = 0, ∀m ⩾ k d’après Q30).

(où les ak sont les coefficients du développement en série entière de h)

En utilisant la relation n(n+ 1)an+1 = (n− p)an, on trouve p = n = deg(P ) ∈ N∗ .

Réciproquement, si p ∈ N∗, on peut construire une solution polynomiale non nulle de (Ep)

en utilisant la relation de récurrence de la question Q.30 (avec a1 non nul quelconque).

De plus par la question Q 2), toute restriction à R∗
+ d’une fonction polynomiale appartient

à E.

Q.32 Pour tout x ∈ R∗
+,

h(x) = e−xP (x), h′(x) = −e−xP (x) + e−xP ′(x), h′′(x) = e−xP (x) − 2e−xP ′(x) +

e−xP ′′(x)

x
(
h′′(x) + h′(x)

)
+ ph(x) =

(
x(P ′′(x)− P ′(x)) + pP (x)

)
e−x = 0

Q.33 On écrit P (x) =
∑p

k=1 akx
k, h(x) = P (x)e−x.

h est le produit de deux sommes de séries entières de rayon de convergence +∞, elle est

donc développable en série entière sur R.

Q.34 Pour tout n ⩾ 2, bn = − n+p−1
n(n−1)

bn−1 donc

∀n ∈ N∗ bn =

(
−n+ p− 1

(n− 1)n

)
. . .

(
−p+ 1

1.2

)
b1 = (−1)n−1 (n+ p− 1)!

(n− 1)!n!p!
b1
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Q.35 La fonction exponentielle est développable en série entière sur R, on multiplie juste

par xp−1 et on trouve : ∀x ∈ R gp(x) = xp−1e−x =
+∞∑
n=0

(−1)nxn+p−1

n!

En dérivant terme à terme : g
(p)
p (x) =

+∞∑
n=1

(−1)n(n+ p− 1) · · ·n
n!

xn−1 =
+∞∑
n=1

(−1)n
(n+ p− 1)!

(n− 1)!n!
xn−1

D’où xg
(p)
p (x) =

+∞∑
n=1

(−1)n
(n+ p− 1)!

(n− 1)!n!
xn =

∞∑
n=1

cnx
n

avec cn = (−1)n (n+p−1)!
(n−1)!n!

On a pour tout n ∈ N∗, bn = − cn
p!
b1 donc pour tout x > 0,

h(x) = Cxg(p)p (x)

P (x) = Cexxg(p)p (x)

avec C = −b1
p!

Q.36 On prend juste a0 = 0, a1 ̸= 0 quelconque, et on construit la suite (an)n par la

relation de récurrence définie dans la question Q.30, la somme de la série entière est une

solution de l’équation.

Comme p /∈ N, on a alors an ̸= 0 pour tout n ⩾ 1, et |an+1|
|an| = |n−p|

n(n+1)
∼ n

n2 → 0, donc par

la règle de d’Alembert, le rayon de convergence est +∞ .

Q.37 Pour n > p,

(n+ 1) |an+1|
|an| = n−p

n
→ 1

En appliquant la définition de la limite avec ε = 1
2
, on établit l’existence d’un entier q > p

tel que

∀n ⩾ q (n+ 1)
|an+1|
|an|

⩾ 1−
∣∣∣∣1− |an+1|

|an|

∣∣∣∣ ⩾ 1− 1

2
=

1

2

Q.38 Pour tout n ⩾ q,

|an| ⩾
1

2n
. . .

1

2(q + 1)
|aq| =

q!

2n−qn!
|aq|

Q.39 Pour tout x ⩾ 0

ψ(x) =
+∞∑
n=q

|an|xn ⩾ K

+∞∑
n=q

xn

2nn!
= K

(
e

x
2 −R(x)

)
avec K = 2q|aq|q! > 0 et R(x) =

∑q−1
n=0

xn

2nn!

ψ2(x)e−x

x
⩾
K2

x

(
1− e−

x
2R(x)

)2 ∼+∞
K2

x

car e−x/2R(x) = O∞(e−x/2xq−1) = o∞(1).

La fonction x 7→ K2

x
est positive et n’est pas intégrable au voisinage de +∞[, donc

x 7→ ψ2(x)e−x

x
ne l’est pas non plus.

Donc ψ /∈ E .
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Q.40 La fonction x 7→
∑q−1

n=1 anx
n appartient à E par Q2). De plus par Q30 les an sont

tous de même signe à partir du rang q donc ψ : x 7→
∑∞

n=q anx
n ou ψ : x 7→ −

∑∞
n=q anx

n

Si f appartenait à E alors ψ appartiendrait aussi à E comme différence ou somme

d’éléments de E.

Donc f ̸∈ E .

V - Éléments propres de U

Q.41 Par Q22), U est injectif. 0 n’est donc pas une valeur propre de U .

Q.42 Soient λ une valeur propre de U , et f un vecteur propre associé, U(f) = λf .

D’après la question Q.18, U(f) est solution de l’équation : y′′ − y′ = −f(x)
x

On a donc : λf ′′ − λf ′ = −f(x)
x

et ainsi ∀x > 0 x(f ′′(x)− f ′(x)) +
1

λ
f(x) = 0

Q.43 Soit λ une valeur propre de U et soit f un vecteur propre associé à la valeur propre

λ.

f est donc solution non nulle de l’équation (E 1
λ
), et f ∈ E.

L’énoncé semble admettre (c’est mal formulé, il eut fallu écrire “on admet que” et non “on

suppose que”) que f est alors somme sur R∗
+ d’une série entière de rayon de convergence

infini.

D’après la question Q40), 1
λ
∈ N∗ donc λ = 1

p
avec p ∈ N∗

Q.44 P est une solution de (Ep) : x(P
′′ − P ′) + pP = 0.

U(P ) vérifie l’équation : y′′ − y′ = −P (x)
x

donc P vérifie x(U(P )′′ − U(P )′) + P = 0

Posant T = pU(P )− P on a : T ′′ − T ′ = p(U(P )′′ − U(P )′)− (P ′′ − P ′) = 0

Q.45 En gardant les notations de la question précédente : T ′′ − T ′ = 0

L’équation caractéristique est : r2− r = 0, on a deux racines réelles distinctes 0 et 1 donc

∃(a, b) ∈ R2 : ∀x ∈ R∗
+ pU(P )(x)− P (x) = T (x) = aex + b

P et U(P ) sont dans E qui est stable par combinaison linéaire (Q.10). D’après la question

Q.3, on doit avoir a = b = 0 .

Donc T = 0 et ainsi U(P ) =
1

p
P

P est donc un vecteur propre de U .

Q.46 On prend deux entiers non nuls p, q distincts.

Par la question Q35), Pp vérifie (Ep), donc par la question Q45), Pp est vecteur propre de

U associé à p. Idem mut. mut. pour Pq.

U(Pp) =
1
p
Pp, U(Pq) =

1
q
Pq

En utilisant la question Q.29 :
〈

1
p
Pp, Pq

〉
= ⟨U(Pp), Pq⟩ = ⟨Pp, U(Pq)⟩ =

〈
Pp,

1
q
Pq

〉
On trouve :

(
1
p
− 1

q

)
⟨Pp, Pq⟩ = 0 donc ⟨Pp, Pq⟩ = 0 car 1

p
− 1

q
̸= 0.
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