
MP1 / MP2 Devoir Surveillé 6 (plus difficile) - Corrigé 2025 – 2026

I. Préliminaires

I.A - Projection sur un convexe fermé

Q 1. On a ∥a+ b∥2 = ⟨a+ b, a+ b⟩ = ⟨a, a⟩+ ⟨a, b⟩+ ⟨b, a⟩+ ⟨b, b⟩
donc ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨a, b⟩ et de même ∥a− b∥2 = ∥a∥2 + ∥b∥2 − 2⟨a, b⟩
Par somme, on a l’identité du parallélogramme : ∥a+ b∥2 + ∥a− b∥2 = 2(∥a∥2 + ∥b∥2)

Géométriquement, dans un parallélogramme (ABCD) (i.e.
−−→
AB =

−−→
DC), on a

AB2 +BC2 + CD2 +DA2 = AC2 +BD2

Q 2. On suppose que u, v et v′ dans E vérifient v ̸= v′ et ∥u− v∥ = ∥u− v′∥ .

On a 2

∥∥∥∥u− v + v′

2

∥∥∥∥ = ∥u− v + u− v′∥

En appliquant la question précédente on a ∥(u−v)+(u−v′)∥2+∥v′−v∥2 = 2
(
∥u− v∥2 + ∥u− v′∥2

)
=

4∥u− v∥2

Comme v ̸= v′, on a ∥v′ − v∥2 > 0

donc ∥(u− v) + (u− v′)∥ < 2∥u− v∥ car
√
· est strictement croissante sur R+

En divisant par 2, on a alors

∥∥∥∥u− v + v′

2

∥∥∥∥ < ∥u− v∥

Q 3. Admis

Q 4. On suppose que C est un convexe fermé non vide de E et u est un vecteur de E.

L’existence voulue est établie en Q3.

Par l’absurde s’il existait v ̸= v′ dans C tels que ∀w ∈ C, ∥u − v∥ ⩽ ∥u − w∥ et ∀w ∈
C, ∥u− v′∥ ⩽ ∥u− w∥
On aurait alors ∥u− v∥ = ∥u− v′∥, et on pourrait appliquer Q2,

ainsi

∥∥∥∥u− v + v′

2

∥∥∥∥ < ∥u− v∥ or
v + v′

2
∈ C car C est convexe

ceci est en contradiction avec ∀w ∈ C, ∥u− v∥ ⩽ ∥u− w∥
On a établi qu’il existe un unique v dans C tel que ∀w ∈ C, ∥u− v∥ ⩽ ∥u− w∥

I.B - Inégalité de Hölder pour l’espérance

Visiblement, on suppose que pour α > 0, la fonction x 7→ xα est définie au moins sur R+ et
s’annule en 0

Q 5. Soit deux réels positifs a et b.

Si a ou b est nul alors ab = 0 ⩽ ap

p + aq

q .

Sinon, on a 1
p ∈ [0, 1] et par concavité du logarithme sur ]0,+∞[, on a :

1

p
ln (ap) +

(
1− 1

p

)
ln (bq) ⩽ ln

(
1

p
ap +

(
1− 1

p

)
bq
)

d’où ln(a× b) ⩽ ln
(
ap

p + bq

q

)
Comme exp est croissante, on peut conclure que dans tous les cas : ab ⩽

ap

p
+

aq

q

Q 6. On remarque que comme l’univers est fini, les variables aléatoires admettent des moments
à tout ordre.

Par positivité de l’espérance, on a : E(|X|p) ⩾ 0 et E(|Y |q) ⩾ 0
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Premier cas : On suppose que E(|X|p) = E(|Y |q) = 1.

Pour tout ω ∈ Ω, on a |X(ω)Y (ω)| ⩽ |X(ω)|p
p + |Y (ω)|q

q d’après la question précédente

donc |XY | ⩽ 1
p |X|p + 1

q |Y |q

d’où E (|XY |) ⩽ 1
pE (|X|p) + 1

qE (|Y |q) par croissance et linéarité de l’espérance

donc E (|XY |) ⩽ 1
p + 1

q = 1 = E(|X|p)E(|Y |q)
Deuxième cas : On suppose que E(|X|p) > 0 et E(|Y |q) > 0

Je note λ = E(|X|p), X ′ = 1
λ1/pX, µ = E(|Y |p) et Y ′ = 1

µ1/q Y

Ainsi on a E(|X ′|p) = E(|Y ′|q) = 1 et on peut appliquer le premier cas à X ′ et Y ′

donc

E
(
|X ′Y ′|

)
⩽ E(|X ′|p)E(|Y ′|q) et ainsi E

(∣∣∣∣ XY

λ1/pµ1/q

∣∣∣∣) ⩽ 1

ce qui donne E (|XY |) ⩽ λ1/pµ1/q = E (|X|p)1/pE (|Y |q)1/q

Troisième cas : On suppose que E(|X|p) = 0 ou E(|Y |q) = 0.

Sans perte de généralité, traitons le cas E(|X|p) = 0.

Alors
∑

x∈X(Ω)

|x|pP(X = x) = 0 selon la formule du transfert

Comme il s’agit d’une somme finie de réels positifs, on a ∀x ∈ X(Ω) \ {0}, P(X =
x) = 0

donc X est nulle presque sûrement donc il en est de même pour XY et aussi pour
|XY |
d’où E(|XY |) = 0 = E (|X|p)1/pE (|Y |q)1/q

E(|XY |) ⩽ E (|X|p)1/pE (|Y |q)1/q

Conclusion : Dans tous les cas, on a E(|XY |) ⩽ E (|X|p)1/pE (|Y |q)1/q

I.C - Espérance conditionnelle

Q 7. On a E(X) =
∑

x∈X(Ω)

x · P(X = x) or selon la formule des probabilités totales avec

(A1, . . . , Am) un système complet d’événements de probabilités non nulles, on a ∀x ∈ X(Ω),

P(X = x) =
m∑
i=1

PAi(X = x) ·P(Ai)

donc E(X) =
∑

x∈X(Ω)

m∑
i=1

x ·PAi(X = x) ·P(Ai) =
m∑
i=1

P(Ai) ·
∑

x∈X(Ω)

x ·PAi(X = x)

ce qui permet de conclure : E(X) =
m∑
i=1

P(Ai) ·E(X|Ai)

I.D - Variables aléatoires à queue sous-gaussienne

Q 8. Notons X2(Ω) = {y1, . . . , yn} où 0 ⩽ y1 < · · · < yn. Pour simplifier les notations, on pose
aussi y0 = 0.

On remarque pour commencer que la fonction définie sur [0,+∞[ par t 7→ tP(|X| ⩾ t) est
une fonction en escalier car elle est constante sur tout intervalle de la forme ]

√
yi−1,

√
yi]

pour i ∈ [[1, n]]. Elle est de plus nulle sur ]
√
yn,+∞[. On en déduit que l’intégrale du terme

de droite est une intégrale convergente.

De plus, par relation de Chasles,

2

∫ +∞

0
tP(|X| ⩾ t)dt =

n∑
i=1

2

∫ √
yi

√
yi−1

tP(|X| ⩾ t)dt

=

n∑
i=1

2P(|X| ⩾ √
yi)

∫ √
yi

√
yi−1

tdt
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La deuxième égalité venant du fait que t 7→ P(|X| ⩾ t) est constante égale à P(|X| ⩾ √
yi)

sur ]
√
yi−1, yi].

On en déduit que

2

∫ +∞

0
tP(|X| ⩾ t)dt =

n∑
i=1

P(|X| ⩾ √
yi)(yi − yi−1)

=
n∑

i=1

yiP(|X| ⩾ √
yi)−

n−1∑
i=0

yiP(|X| ⩾ √
yi+1)

=
n−1∑
i=1

yi [P(|X| ⩾ √
yi)−P(|X| ⩾ √

yi+1)] + ynP(|X| ⩾ √
yn)

Or P(|X| ⩾ √
yi) − P(|X| ⩾ √

yi+1) = P(|X| = √
yi) et P(|X| ⩾ √

yn) = P(|X| = √
yn)

donc

2

∫ +∞

0
tP(|X| ⩾ t)dt =

n∑
i=1

yiP(|X| = √
yi) =

n∑
i=1

yiP(X2 = yi) = E(X2)

Q 9. La fonction t 7−→ at exp(−bt2) est continue et positive sur [0,+∞[ (1)

Soit A > 0. On a 2

A∫
0

at exp(−bt2) dt =

[
a

−b
exp(−bt2)

]t=A

t=0

= −a

b
exp(−bA2) +

a

b

Ainsi

A∫
0

at exp(−bt2) dt −→
A→+∞

a

2b

ce qui prouve l’intégrabilité de t 7−→ at exp(−bt2) sur [0,+∞[ avec (1)

De plus ∀t ⩾ 0, tP(|X| ⩾ t) ⩽ at exp(−bt2)

d’où E(X2) = 2

+∞∫
0

tP(|X| ⩾ t) t. ⩽ 2

+∞∫
0

at exp(−bt2) t. =
a

b

Q 10. Soit t ∈ R. Soit x ∈ R.

On a |x+ δ| ⩾ |x|+ |δ| selon l’inégalité triangulaire

ce qui permet de conclure que P(|X + δ| ⩾ t) ⩽ P(|X| ⩾ t− |δ|)
Q 11. Soit t ∈ R. On a

a− t2b

2
−
(
−b(t− |δ|)2

)
=

t2b

2
− 2b|δ|t+ a+ bδ2 = b

(t− 2|δ|)2

2
+ a− bδ2 ⩾ 0

comme b|δ|2 ⩽ a, ceci prouve −b(t− |δ|)2 ⩽ a− t2b

2

Q 12. Soit t ∈ R tel que t ⩾ |δ|.
En servant de Q10. puis de l’hypothèse en I.D car t− |δ| ⩾ 0, on a

P(|X + δ| ⩾ t) ⩽ P(|X| ⩾ t− |δ|) ⩽ a exp
(
−b(t− |δ|)2

)
Puis en utilisant la croissance de l’exponentielle et Q11.,

on obtient : P(|X + δ| ⩾ t) ⩽ a exp(a− bt2/2) = a exp(a) exp(−1

2
bt2)

Q 13. Si 0 ⩽ t < |δ|, on a t2 ⩽ δ2 ⩽
a

b

donc −1

2
bt2 ⩾ −a

2
et a exp(a) exp(−1

2bt
2) ⩾ a exp(a) exp(−a

2 )a = a exp(a2 )

D’après l’inégalité sous-gaussienne en t = 0, on a 1 = P(|X| ⩾ 0) ⩽ a exp(0) = a

d’où a exp(a) exp(−1
2bt

2) ⩾ 1 exp(1/2) ⩾ 1 ⩾ P(|X + δ| ⩾ t)

On a justifié que l’inégalité de Q12 reste valable si 0 ⩽ t < |δ|
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II. L’inégalité de concentration de Talagrand

II.A - Étude de deux cas particuliers

Q 14. On suppose que C est un convexe fermé ne rencontrant pas X(Ω) alors (X ∈ C) est
l’événement impossible

ainsi dans ce cas on a P(X ∈ C) ·E
(
exp

(
1

8
d(X,C)2

))
= 0 ⩽ 1

Q 15. Je note u =
n∑

i=1
uiei où les ui sont les coordonnées de u dans la base (e1, . . . , en)

Pour ω ∈ Ω, on a par calcul dans une base orthonormée :

1

4
d(X(ω), u)2 =

∥X(ω)− u∥2

4
=

n∑
i=1

(εi(ω)− ui)
2

4

Pour i ∈ [[1, n]], je note Yi =
(εi − ui)

2

4
Comme ui ∈ {−1, 1} et que εi est à valeurs dans {−1, 1}, alors Yi est à valeurs dans {0, 1}

De plus (Yi = 0) = (εi = ui) et donc P(Yi = 0) =
1

2
. Ainsi Yi ↪→ B(1/2).

De plus
1

4
d(X(ω), u)2 =

n∑
i=1

Yi et les Yi sont indépendantes par lemme des coalitions.

Ce qui permet de conclure que
1

4
d(X,u)2 suit une loi binomiale de paramètres n et 1/2

Q 16. D’après ce qui précède
1

4
d(X,u)2 est à valeurs dans [[0, n]]

et ∀k ∈ [[0, n]], P

(
1

4
d(X,u)2 = k

)
=
(
n
k

) (
1
2

)k (1
2

)n−k
=

(
n
k

)
2n

En utilisant la formule de transfert avec exp

(
1

8
d(X,u)2

)
= exp

(
1

2

(
d(X,u)2/4

))
:

E

(
exp

(
1

8
d(X,u)2

))
=

n∑
k=0

exp (k/2)

(
n
k

)
2n

=

n∑
k=0

(
n

k

)(√
e

2

)k (
1

2

)n−k

donc selon le binôme de Newton : E

(
exp

(
1

8
d(X,u)2

))
=

(√
e+ 1

2

)n

Comme e ⩽ 3 ⩽ 9, on a 0 ⩽

√
e+ 1

2
⩽ 2 et donc E

(
exp

(
1

8
d(X,u)2

))
⩽ 2n

Q 17. On a d(X,C) = inf
v∈C

d(X, v) ⩽ d(X,u)

De plus comme X(Ω)
⋂

C = {u}, on a (X ∈ C) = (X = u) =
n⋂

i=1

(εi = ui) en reprenant

les notations de Q14.

Donc par indépendance mutuelle des εi, on a

P(X ∈ C) =
n∏

i=1

P(εi = ui) =
1

2n

Comme les facteurs sont positifs et à l’aide de la question Q 16, on a P(X ∈ C) ·
E
(
exp

(
1
8d(X,C)2

))
⩽ 1

On a bien l’inégalité (II.1) dans ce cas
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II.B - Initialisation

Q 18. Pour le cas n = 1, j’identifie E à R et X à ε1 qui suit donc une loi de Rademacher

On a donc X(Ω) = {−1, 1} et comme C ∩X(Ω) contient au moins deux éléments

alors X(Ω) = {−1, 1} = C ∩X(Ω) ⊂ C et donc (X ∈ C) = Ω est l’événement certain

d’où d(X,C) vaut certainement 0 et donc (exp
(
1
8d(X,C)2

)
est constante égale 1

d’où pour n = 1, on a P(X ∈ C) ·E
(
exp

(
1
8d(X,C)2

))
= 1× 1 = 1 ⩽ 1 selon Attila

H1

Y1(ω) + en

C ∩H1

E′

X ′(ω)

Y−1(ω)Y1(ω) C−1C1

H−1

Y−1(ω)− en

C ∩H−1

X(ω)

−en

Illustration dans le cas où εn = −1

Q 19. Soit x′ ∈ E′ et t ∈ {1,−1}.
⇐ : On suppose que : x′ + ten ∈ C. On a donc x′ + ten ∈ C ∩Ht car x

′ ∈ E′.

Comme π est une projection et que x′ ∈ E′ = Imπ, on a π(x′) = x′

et que Ker(π) = Vect(e1, . . . , en−1)
⊥ = Vect(en), on a π(en) = 0

Par linéarité π(x′ + ten) = x′ d’où x′ ∈ π(C ∩Ht) = Ct

⇒ : On suppose que : x′ ∈ Ct = π(C∩Ht). Ceci nous fournit y ∈ C∩Ht tel que x
′ = π(y)

On écrit y =

n∑
i=1

yiei où les yi ∈ R On a donc x′ = π(y) =

n−1∑
i=1

yiei

et comme y ∈ Ht, on a y − ten =
n−1∑
i=1

yiei + (yn − t)en ∈ E′

donc (yn − t)en ∈ E′ puis yn = t

et ainsi x′ + ten = y ∈ C

Conclusion : on a bien : x′ ∈ Ct ⇐⇒ x′ + ten ∈ C

Q 20. Ct ⊂ E′ : Par définition, on a C1 ⊂ Im(π) = E′. De même pour C−1

Ct ̸= ∅ : Par hypothèse, C∩X(Ω) contient au moins deux vecteurs qui diffèrent par leur
dernière coordonnée.

Ceci nous fournit y =

n−1∑
i=1

yiei + en ∈ C ∩X(Ω) et z =

n−1∑
i=1

ziei − en ∈ C ∩X(Ω) où

les yi et les zi sont réels.

On note y′ =

n−1∑
i=1

yiei et z
′ =

n−1∑
i=1

ziei et on a y′ et z′ ∈ E′

En utilisant la réciproque de la question précédente, on a y′ ∈ C+1 et z′ ∈ C−1

Donc C+1 ̸= ∅ et C−1 ̸= ∅
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Ct convexe : Établissons que C+1 est convexe et ce sera analogue pour C−1

Soit x, y ∈ C+1. Soit λ ∈ [0, 1]. Montrons λx+ (1− λ)y ∈ C+1.

On a x et y ∈ E′ donc λx+ (1− λ)y ∈ E′ car E′ est un sous-espace vectoriel

De plus λx+ (1− λ)y + en = λ(x+ en) + (1− λ)(y + en)

Or en utilisant le sens direct de Q19., on a x+ en ∈ C et y + en ∈ C

Comme C est convexe, on a donc λx+ (1− λ)y + en ∈ C

d’où λx+ (1− λ)y ∈ C1 par la réciproque de Q19.

Ct fermé : Établissons que C+1 est fermé de E′ et ce sera analogue pour C−1.

Soit (uk)k∈N une suite à valeurs dans C+1 qui converge vers ℓ ∈ E′. Montrons que
ℓ ∈ C+1

Pour k ∈ N, on a comme ci-dessus uk + en ∈ C

or par somme (xk + en)k∈N converge vers ℓ+ en.

Comme C est fermé de E, on a ℓ+ en ∈ C,

comme ℓ ∈ E′, on a bien ℓ ∈ C+1 d’après Q19.

Conclusion : On a bien C+1 et C−1 sont des convexes fermés non vides de E′

Q 21. (εn = 1) et (εn = −1) forment un système complet d’événements de probabilités 1/2 donc
selon la formule des probabilités totales :

P(X ∈ C) = P (X ∈ C, εn = 1)) + P (X ∈ C, εn = −1)

Soit ω ∈ Ω. Soit t ∈ {−1, 1}.
On a X(ω) = X ′(ω) + εn(ω)en et X ′(ω) ∈ E′ et εn(ω) ∈ {−1, 1} donc d’après Q19 :{

X(ω) ∈ C
εn(ω) = t

⇐⇒
{

X ′(ω) ∈ Ct

εn(ω) = t

Ainsi P(X ∈ C) = P
(
X ′ ∈ C+1, εn = 1)

)
+ P

(
X ′ ∈ C−1, εn = −1

)
Or X ′ =

n−1∑
i=1

εiei et εn sont des variables aléatoires indépendantes par le lemme des coali-

tions. D’où

P(X ∈ C) = P
(
X ′ ∈ C+1

)
· P (εn = 1) + P

(
X ′ ∈ C−1

)
· P (εn = −1)

On a donc bien P(X ∈ C) =
1

2
P(X ′ ∈ C+1) +

1

2
P(X ′ ∈ C−1)

II.D - Une inégalité cruciale

Q 22. Soit ω ∈ Ω. On a Yεn(ω)(ω) ∈ Cεn(ω)

donc Yεn(ω)(ω) + εnen(ω) ∈ C d’après Q19. et de même Y−εn(ω)(ω)− εnen(ω) ∈ C donc

(1− λ)
(
Yεn(ω)(ω) + εnen(ω)

)
+ λ

(
Y−εn(ω)(ω)− εnen(ω)

)
∈ C

car C convexe et λ ∈ [0, 1] d’où

d(X(ω), C) ⩽ ∥(1− λ)
(
Yεn(ω)(ω) + εnen(ω)

)
+ λ

(
Y−εn(ω)(ω)− εnen(ω)

)
−X(ω)∥

On a bien montré d(X,C) ⩽ ∥(1− λ)(Yεn + εnen) + λ(Y−εn − εnen)−X∥

Q 23. On a X = X ′+ εnen donc (1−λ)(Yεn + εnen)+λ(Y−εn − εnen)−X = (1−λ)(Yεn −X ′)+
λ(Y−εn −X ′ − 2εnen)

ainsi (1−λ)(Yεn +εnen)+λ(Y−εn −εnen)−X = (1−λ)(Yεn −X ′)+λ(Y−εn −X ′)−2λεnen
La variable aléatoire 2λεnen est à valeurs dans Vect(en) et (1−λ)(Yεn−X ′)+λ(Y−εn−X ′)
à valeurs dans E′

or E′ ⊥ Vect(en) et ∥en∥ = 1 donc selon le théorème de Pythagore

∥(1−λ)(Yεn + εnen)+λ(Y−εn − εnen)−X∥2 = 4λ2+ ∥(1−λ)(Yεn −X ′)+λ(Y−εn −X ′)∥2
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on en déduit avec la question précédente que

d(X,C)2 ⩽ 4λ2 + ∥(1− λ)(Yεn −X ′) + λ(Y−εn −X ′)∥2

Soit u et v ∈ E. Montrons ∀t ∈ [0, 1], (1− t)∥u∥2 + t∥v∥2 ⩾ ∥(1− t)u+ tv∥2

Je pose P : t 7→ (1− t)∥u∥2 + t∥v∥2 − ∥(1− t)u+ tv∥2

Soit t ∈ R. On a P (t) =
(
(1− t)− (1− t)2

)
∥u∥2 +

(
t− t2

)
∥v∥2 − 2t(1− t)⟨u, v⟩

donc P (t) = t(1− t)
[
∥u∥2 + ∥v∥2 − 2⟨u, v⟩

]
= t(1− t)∥u− v∥2

d’où ∀t ∈ [0, 1], P (t) ⩾ 0 d’où le résultat.

En appliquant ceci à t = λ, u = Yεn(ω)(ω)−X ′(ω) et v = Y−εn(ω)(ω)−X ′(ω) pour ω ∈ Ω
on obtient :

d(X,C)2 ⩽ 4λ2+∥(1−λ)(Yεn−X ′)+λ(Y−εn−X ′)∥2 ⩽ 4λ2+(1−λ)∥Yεn−X ′∥2+λ∥Y−εn−X ′∥2

Ainsi, on a montré l’inégalité d(X,C)2 ⩽ 4λ2 + (1− λ)d(X ′, Cεn)
2 + λd(X ′, C−εn)

2

II.E - Espérances conditionnelles

Q 24. Comme C ∩ X(Ω) contient au moins deux vecteurs qui diffèrent par leur dernière coor-
donnée,

ceci nous fournit x′ =
n−1∑
i=1

xiei ∈ E′ tel que {x′ + en, x
′ − en} ⊂ C ∩X(Ω)

Ainsi d’après Q19., x′ ∈ C−1 et donc (X ′ = x′) ⊂ (X ′ ∈ C−1)

or (X ′ = x′) =
n−1⋂
i=1

(εi = xi) donc par indépendance des εi on a

P(X ′ = x′) =
n−1∏
i=1

P(εi = xi) =
1

2n−1

et donc P(X ′ ∈ C−1) ⩾ P(X ′ = x′) > 0 d’où p− > 0

Q 25. Lemme 1 : Soit X et Y deux variables aléatoires réelles, f : R × Y (Ω) −→ R et k ∈ R
tels que P(Y = k) > 0. On a :

E(f(X,Y )|Y = k) = E(f(X, k)|Y = k)

Par transfert (toutes les sommes sont à support fini),

E(f(X,Y ) |Y = k) =
∑
x,y∈R

f(x, y)P(Y=k)(X = x, Y = y)

=
∑
x,y∈R

f(x, y)
P(X = x, Y = y, Y = k)

P(Y = k)

=
∑
x∈R

f(x, k)
P(X = x, Y = k)

P(Y = k)
= E(f(X, k) | Y = k)

car pour y ̸= k, P(X = x, Y = y, Y = k) = P(∅) = 0.

Lemme 2 : Soit X et Y deux variables aléatoires réelles indépendantes et k ∈ R tels
que P(Y = k) > 0. On a :

E(X|Y = k) = E(X)

Il suffit d’utiliser la définition de l’espérance conditionnelle et de remarquer que
P(Y=k)(X = x) = P(X = x)

Soit λ dans [0, 1]. On a d’après Q23. :
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exp

(
d(X,C)2

8

)
⩽ exp

(
λ2

2

)(
exp

(
d(X ′, Cεn)

2

8

))1−λ

·
(
exp

(
d(X ′, C−εn)

2

8

))λ

(⋆)

D’après le lemme 1 : E

((
exp

(
d(X ′, Cεn)

2

8

))1−λ

·
(
exp

(
d(X ′, C−εn)

2

8

))λ ∣∣εn = −1

)
=

· · ·

· · ·E

((
exp

(
d(X ′, C−1)

2

8

))1−λ

·
(
exp

(
d(X ′, C1)

2

8

))λ ∣∣εn = −1

)

Avec le lemme des coalitions, les variables aléatoires εn et
(
exp

(
d(X′,C−1)2

8

))1−λ
·
(
exp

(
d(X′,C1)2

8

))λ
sont indépendantes car εn et de X ′ le sont ; puis le lemme 2 donne :

E

(
exp

(
d(X ′, C−1)

2

8

)1−λ

exp

(
d(X ′, C1)

2

8

)λ ∣∣εn = −1

)
= E

(
exp

(
d(X ′, C−1)

2

8

)1−λ

exp

(
d(X ′, C1)

2

8

)λ
)

À l’aide de (⋆), de la croissance et la linéarité de l’espérance conditionnelle, on obtient :

E
(
exp

(
d(X,C)2

8

)
|εn = −1

)
⩽ exp

(
λ2

2

)
E

((
exp

(
d(X ′, C−1)

2

8

))1−λ

·
(
exp

(
d(X ′, C1)

2

8

))λ
)

Q 26. On suppose λ ∈ ]0, 1[. On pose p =
1

1− λ
et q =

1

λ
de sorte que p > 0, q > 0 et

1

p
+

1

q
= 1

D’après Q6, pour Y et Z variables positives, on a Y 1/p =
∣∣Y 1/p

∣∣ et Z1/q =
∣∣Z1/q

∣∣ :
E
(
Y 1/pZ1/q

)
⩽ E

((
Y 1/p

)p)1/p
E
((

Z1/q
)q)1/q

= E (Y )1/p E (Z)1/q

donc
E
(
Y 1−λZλ

)
⩽ E (Y )1−λ E (Z)λ

En appliquant ceci au résultat de Q25., on obtient pour tout λ ∈ ]0, 1[ :

E
(
exp

(
d(X,C)2

8

)
|εn = −1

)
⩽ exp

(
λ2

2

)(
E
(
exp

(
d(X ′, C−1)

2

8

)))1−λ

·
(
E
(
exp

(
d(X ′, C1)

2

8

)))λ

or λ 7−→ exp

(
λ2

2

)(
E
(
exp

(
d(X ′, C−1)

2

8

)))1−λ

·
(
E
(
exp

(
d(X ′, C1)

2

8

)))λ

est conti-

nue sur [0, 1]

On déduit en passant à la limite en 0 et 1 que pour tout λ ∈ [0, 1], on a :

E
(
exp

(
d(X,C)2

8

)
|εn = −1

)
⩽ exp

(
λ2

2

)(
E
(
exp

(
d(X ′, C−1)

2

8

)))1−λ

·
(
E
(
exp

(
d(X ′, C1)

2

8

)))λ

Q 27. On utilise la question précédente en λ = 0, on échange +1 et −1 qui jouent des rôles
symétriques. puis on multiplie par p+ ⩾ 0 pour obtenir :

p+ · E
(
exp

(
d(X,C)2

8

)
|εn = 1

)
⩽ p+ · E

(
exp

(
d(X ′, C1)

2

8

))

On a donc p+ · E
(
exp

(
d(X ′, C1)

2

8

))
= P

(
X ′ ∈ C1

)
· E
(
exp

(
d(X ′, C1)

2

8

))
or X ′ =

n−1∑
i=1

εiei est à valeurs dans l’espace euclidien E′ de dimension n− 1 de base ortho-

normée (e1, . . . , en−1), C1 est un convexe fermé non vide de E′ et les εi sont indépendantes
et suivent la loi de Rademacher d’où par hypothèse de récurrence, on peut appliquer (II.1) :

p+ ·
(
E
(
exp

(
d(X ′, C1)

2

8

)))
⩽ 1
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Enfin comme p+ > 0 selon Q24. (p+ et p− jouant des rôles symétriques), on a alors

E
(
exp

(
1

8
d(X,C)2

)
|εn = 1

)
⩽

1

p+

Q 28. On utilise la formule des probabilités totales sur les espérances conditionnelles de Q7. avec
le système complet d’événements : (εn = t)t∈{−1,1} de probabilités 1/2 qui est non nulle :
donc

E
(
exp

(
1

8
d(X,C)2

))
=

1

2
E
(
exp

(
1

8
d(X,C)2

) ∣∣∣∣εn = 1

)
+
1

2
E
(
exp

(
1

8
d(X,C)2

) ∣∣∣∣εn = −1

)
Soit λ dans [0, 1]. On applique les deux questions précédentes :

E
(
exp

(
1

8
d(X,C)2

))
⩽

1

2

(
1

p+
+ exp

(
λ2

2

)(
E
(
exp

(
d(X ′, C−1)

2

8

)))1−λ

·
(
E
(
exp

(
d(X ′, C1)

2

8

)))λ
)

En utilisant l’hypothèse de récurrence comme à la question précédente on a :

E
(
exp

(
d(X ′, C−1)

2

8

))
⩽

1

p−
et E

(
exp

(
d(X ′, C1)

2

8

))
⩽

1

p+

On en déduit que pour tout λ dans [0, 1] : E
(
exp

(
1

8
d(X,C)2

))
⩽

1

2

(
1

p+
+ exp

(
λ2

2

)
1

(p−)
1−λ

· 1

(p+)
λ

)

II.F - Optimisation

Q 29. Quitte à remplacer en par −en, on peut supposer que 0 < p− ⩽ p+. On a alors λ =
1− p−

p+
∈ [0, 1] donc d’après Q28 :

E
(
exp

(
1

8
d(X,C)2

))
⩽

1

2p+

(
1 + exp

(
λ2

2

)(
p+
p−

)1−λ
)

or (1− λ)λ−1 =
(
p−
p+

)λ−1
=
(
p+
p−

)1−λ

Ainsi on a bien E
(
exp

(
1

8
d(X,C)2

))
⩽

1

2p+

(
1 + exp

(
λ2

2

)
(1− λ)λ−1

)
Q 30. Je pose g : x 7−→ ln(2 + x) − ln(2 − x) − x2

2 − (x − 1) ln(1 − x) qui est C∞ sur [0, 1[ par
théorèmes généraux.

Soit x ∈ [0, 1[, on a g′(x) =
1

2 + x
+

1

2− x
− x− 1− ln(1− x)

et g′′(x) =
1

(2− x)2
− 1

(2 + x)2
− 1 +

1

1− x
=

8x

(2− x)2(2 + x)2
+

x

1− x
⩾ 0

ainsi g′ est croissante sur [0, 1[

De plus g′(0) = 0 donc ∀x ∈ [0, 1[ , g′(x) ⩾ 0.

d’où g est croissante sur [0, 1[ et comme g(0) = 0, on a ∀x ∈ [0, 1[ , g(x) ⩾ 0.

On a montré que pour tout x ∈ [0, 1[,
x2

2
+ (x− 1) ln(1− x) ⩽ ln(2 + x)− ln(2− x)

Q 31. Soit x ∈ [0, 1[. En appliquant l’exponentielle à l’inégalité précédente, on obtient :

exp

(
x2

2

)
(1− x)x−1 ⩽

2 + x

2− x

d’où 1 + exp

(
x2

2

)
(1− x)x−1 ⩽

4

2− x
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Q 32. En utilisant la question précédente et Q29., et comme λ ∈ [0, 1[ car λ = 1 − p−
p+

et
0 < p− ⩽ p+, on a :

E
(
exp

(
1

8
d(X,C)2

))
⩽

1

2p+

4

2− λ

Or p+(2− λ) = p+

(
1 +

p−
p+

)
= p+ + p− d’où

E
(
exp

(
1

8
d(X,C)2

))
⩽

2

p+ + p−

donc comme 2
p++p−

> 0 , on a
p+ + p−

2
E
(
exp

(
1

8
d(X,C)2

))
⩽ 1

À l’aide de la question 21, par définition de p+ et p−, on a :

P(X ∈ C) · E
(
exp

(
1

8
d(X,C)2

))
⩽ 1 (II.1)

on vient de terminer l’hérédité (commencée en IIC) de notre démonstration par récurrence
dans le cas où C ∩X(ω) contient au moins deux éléments, mais la formule reste vraie si
C ∩X(ω) a au plus un élément d’après IIA (Q14-17).

De plus l’initialisation (le cas où la dimension est 1) a été traitée en IIA ou IIB(Q-18)

selon le cardinal de C ∩X(ω). Ainsi l’inégalité (II.1) a été démontrée par récurrence

II.G - Inégalité de Talagrand

Q 33. Soit C convexe fermé non vide de E et t réel strictement positif. D’après ce qui précède
on a

P(X ∈ C) · E
(
exp

(
d(X,C)2

8

))
⩽ 1 (II.1)

or par croissance sur R+ de x 7→ exp
(
x2

8

)
, on a :

P (d(X,C) ⩾ t) = P
(
exp

(
d(X,C)2

8

)
⩾ exp

(
t2

8

))

En appliquant Markov avec la variable aléatoire positive exp
(
d(X,C)2

8

)
et exp

(
t2

8

)
> 0 on

a :

exp

(
t2

8

)
· P (d(X,C) ⩾ t) ⩽ E

(
exp

(
d(X,C)2

8

))

donc P(X ∈ C) · exp
(
t2

8

)
· P (d(X,C) ⩾ t) ⩽ P(X ∈ C) · E

(
exp

(
d(X,C)2

8

))
⩽ 1

On en déduit l’inégalité de Talagrand :

Pour tout C convexe fermé non vide de E et pour tout réel t strictement positif

P(X ∈ C) · P(d(X,C) ⩾ t) ⩽ exp

(
− t2

8

)

III. Démonstration du théorème de Johnson-Lindenstrauss

III.A - Une inégalité de concentration

Q 34. Fermée L’applicationM ∈ Mk,d(R) 7→ M ·u est linéaire donc continue car dim (Mk,d(R)) =
kd < ∞. Donc par composition g est continue sur Mk,d. Or [0, r] est une partie fermée
de R donc C = g−1 ([0, r]) est une partie fermée de Mk,d(R)
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Convexe Soit M et N ∈ C. Soit λ ∈ [0, 1].

À l’aide de l’inégalité triangulaire et l’homogénéité, on a
g(λM+(1−λ)N) = ∥λM ·u+(1−λ)N ·u∥ ⩽ λ∥M ·u∥+(1−λ)∥N ·u∥ ⩽ (λ+1−λ)r = r

d’où λM + (1− λ)N ∈ C

On a bien montré que C = {M ∈ Mk,d(R) | g(M) ⩽ r} est une partie convexe et fermée de Mk,d(R)

Q 35. Soit M = (mi,j)1⩽i⩽k
1⩽j⩽d

dans Mk,d(R).

On a ∥M · u∥2 =
k∑

i=1

(
d∑

j=1
mi,juj

)2

=
k∑

i=1

∣∣∣∣∣ d∑
j=1

mi,juj

∣∣∣∣∣
2

On applique k fois Cauchy-Schwarz dans Rd, ce qui donne :

∥M · u∥2 ⩽
k∑

i=1

 d∑
j=1

m2
i,j

×

 d∑
j=1

u2j

 =
k∑

i=1

d∑
j=1

m2
i,j

car
d∑

j=1
u2j = ∥u∥2 = 1

Ce qui permet de conclure que ∥M · u∥ ⩽ ∥M∥F
Q 36. Soit M dans Mk,d(R) telle que d(M,C) < t

On a 0 ∈ C donc selon Q34., C est une partie fermée convexe non vide de l’espace euclidien
Mk,d(R)
Ceci nous fournit donc V ∈ C tel que d(M,C) = ∥M − V ∥F et donc ∥M − V ∥F < t

On a g(M) = ∥M · u∥ = ∥(M − V ) · u+ V · u∥ ⩽ ∥(M − V ) · u∥+ ∥V · u∥
Ainsi selon l’inégalité triangulaire et la question précédente : g(M) ⩽ ∥M − V ∥F + r car
V ∈ C

d’où g(M) < r + t

Ainsi pour toute matrice M dans Mk,d(R), d(M,C) < t ⇒ g(M) < r + t

Q 37. On peut appliquer le théorème de Talagrand avec l’espace euclidien Mk,d(R) de dimension

kd muni de la base canonique orthonormée (Ei,j)1⩽i⩽k
1⩽j⩽d

, la variable X =
∑

1⩽i⩽k
1⩽j⩽d

εi,jEi,j où les

εi,j sont mutuellement indépendantes suivant une loi de Rademacher et C convexe fermé
non vide de Mk,d(R) :

P(X ∈ C) · P(d(X,C) ⩾ t) ⩽ exp

(
− t2

8

)
Or (X ∈ C) = (g(X) ⩽ r) par définition de C et (g(X) ⩾ r + t) ⊂ (d(X,C) ⩾ t) par
contraposée de Q36.

On en déduit que P(g(X) ⩽ r) · P(g(X) ⩾ r + t) ⩽ exp

(
− t2

8

)

III.B - Médianes

Q 38. Comme Ω est fini, g(X) prend un nombre fini de valeurs,

on peut alors noter g(X) = {y1, . . . yn} où n ∈ N∗ et y1 < · · · < yn.

Posons Sk = P(g(X) ⩽ yk) = P(g(X) = y1) + . . . + P(g(X) = yk) pour tout k ∈ [[0, n]].
(avec la convention y0 = −∞)

On a 0 = S0 ⩽ S1 ⩽ . . . ⩽ Sn = 1.

Soit k0 = min{k ∈ [[1, n]] | Sk ⩾ 1
2} (comme Sn = 1, cet ensemble est une partie non vide

de N∗) Alors Sk0−1 <
1
2 ⩽ Sk (y compris si k0 = 1).

Ainsi P(g(X) ⩽ yk0) ⩾ 1
2 et P(g(X) ⩽ yk0) = P(g(X) = yk0) + . . . + P(g(X) = yn) =

1− Sk0−1 >
1
2 .

Donc yk0 est une médiane de g(X).
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Q 39. Soit t > 0. En appliquant Q37. à r = m puis r = m− t, on a :

P(g(X) ⩽ m)·P(g(X) ⩾ m+t) ⩽ exp

(
− t2

8

)
et P(g(X) ⩽ m−t)·P(g(X) ⩾ m) ⩽ exp

(
− t2

8

)
Puis à l’aide de la question précédente et par somme

P(g(X) ⩾ m+ t) + P(g(X) ⩽ m− t) ⩽ 4 exp

(
− t2

8

)
Comme (|g(x)−m| ⩾ t) = (g(X) ⩾ m+ t) ∪ (g(X) ⩽ m− t) (union disjointe)

On a P(|g(x)−m| ⩾ t) ⩽ 4 exp

(
− t2

8

)
où m est une médiane de g(X)

Q 40. La variable aléatoire réelle g(X) − m vérifie les hypothèse du I.D, en prenant a = 4 et
b = 1/8

À l’aide de Q9., on déduit que E((g(X)−m)2) ⩽ 32

Q 41. On a g(X)2 = ∥Xu∥2 =
k∑

i=1

(
d∑

j=1
εi,juj

)2

À i ∈ [[1; k]] fixé, on a d∑
j=1

εi,juj

2

=
d∑

j=1

ε2i,ju
2
j + 2

∑
1⩽j<ℓ⩽d

εi,jujεi,ℓuℓ

La variable ε2i,j est constante égale à 1 pour tout j et pour ℓ ̸= j, on a par indépendance
et linéarité :

E (εi,jujεi,ℓuℓ) = uiuℓE (εi,j)E (εi,ℓ) = 0

(loi de Rademacher)

Donc E

 d∑
j=1

εi,juj

2

=

d∑
j=1

u2j = ∥u∥2 = 1 Par somme on peut conclure que E(g(X)2) = k

On applique Q6 à g(X) = |g(X)| et Y = 1 et p = q = 2 pour obtenir E(g(X)) ⩽
√
k

On aurait pu faire appel à Cauchy-Schwarz.

Q 42. Par linéarité et espérance de constante puis en utilisant la question précédente car m ⩾ 0
car P (g(X) ⩾ 0) = 1

E((g(X)−m)2) = E((g(X)2)− 2mE(g(X)) +m2 ⩾ E((g(X)2)− 2m
√
k +m2

On en déduit que (
√
k −m)2 ⩽ E((g(X)−m)2)

III.C - Un lemme-clé

Q 43. On sait déjà que g(X)−m est à queue sous-gaussienne avec a = 4 et b = 1/8

On a (g(X)−
√
k) =

(
g(X)−m+m−

√
k
)

Je pose alors δ = m−
√
k et ainsi δ2 = (m−

√
k)2 ⩽ 32 = a

b d’après Q40. et Q42.

On a bien 0 ⩽ |δ| ⩽
√

a
b . On peut donc utiliser Q12. et Q13.,

pour conclure que pour tout réel strictement positif t : P(|g(X)−
√
k| ⩾ t) ⩽ 4 exp(4) exp

(
− 1

16
t2
)

Q 44. On a (|∥Aku∥ − 1| > ε) = (|∥X · u∥ −
√
k| > ε

√
k) ⊂ (|g(X)−

√
k| ⩾ ε

√
k)

ainsi en utilisant la question précédente avec t = ε
√
k > 0 on a

P(|∥Aku∥ − 1| > ε) ⩽ 4 exp(4) exp

(
− 1

16
kε2
)
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Comme k ⩾ 160 ln(1/δ)
ε2

> 0, on a :

P(|∥Aku∥ − 1| > ε) ⩽ 4 exp(4) exp (10 ln(δ)) = 4 exp(4)δ10 ⩽
4 exp(4)

29
δ =

exp(4)

27
δ

À l’aide la calculatrice :
exp(4)

27
> 1 donc pour tout vecteur unitaire u dans Rd : P(|∥Aku∥ − 1| > ε) < δ

III.D - Conclusion

Q 45. On applique Q45. avec u =
vi−vj

∥vi−vj∥ pour obtenir P(Ei,j) < δ

Q 46. On a : P

 ⋂
1⩽i<j⩽N

Ei,j

 = P

 ⋃
1⩽i<j⩽N

Ei,j

 ⩽
∑

1⩽i<j⩽N

P
(
Ei,j

)
⩽

∑
1⩽i<j⩽N

δ =
N(N − 1)

2
δ

En passant à l’événement contraire on obtient P

 ⋂
1⩽i<j⩽N

Ei,j

 ⩾ 1− N(N − 1)

2
δ

Q 47. Je pose alors c = 320 > 0. Soit ε ∈ ]0, 1[ . Soit N et d entiers ⩾ 2. Soit v1, . . . vN distincts
dans Rd.

Je prends k ∈ N tel que k ⩾ c
ln(N)

ε2
Je choisis δ =

1

N2
∈ ]0, 1/2[ de sorte que k ⩾ 160 ln(1/δ)

ε2

On a alors P

 ⋂
1⩽i<j⩽N

Ei,j

 > 0 donc
⋂

1⩽i<j⩽N

Ei,j ̸= ∅

Ce qui donne une matrice Ak qui donne f qui convient D’où le théorème de Johnson et
Lindenstrauss.
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