MP1 / MP2 Devoir Surveillé 6 (plus difficile) - Corrigé 2025 - 2026

I. Préliminaires

I.A - Projection sur un convexe fermé
Q 1. Ona [la+b|* = (a+b,a+b) = (a,a) + (a,b) + (b,a) + (b,b)
donc ||a + b||? = ||a||® + ||b]|* + 2(a, b) et de méme ||a — b||*> = ||a|® + ||b]|> — 2{(a, b)

Par somme, on a | l'identité du parallélogramme : ||a + b||? + ||a — b]|* = 2(||a||? + |b]|?)

Géométriquement, dans un parallélogramme (ABCD) (i.e. AB = ﬁ), on a

AB? + BC? + CD? + DA% = AC? + BD?

Q 2. On suppose que u,v et v' dans E vérifient v # v et [[u —v| = |ju — 0’| .
/
On a2 |u— v—;v =lu—v4+u—2
En appliquant la question précédente on a || (u—v)+(u—v")||*+|/v'=v[|? = 2 (|lu — v||* + [[u — V'||?) =
4w — v||?

Comme v # v/, on a |[v/ — v||? > 0

donc ||(u —v) + (u — v')|| < 2||u — v|| car /- est strictement croissante sur R

v+
2

En divisant par 2, on a alors | ||u — < |lu =]

Q 3. Admis

Q 4. On suppose que C est un convexe fermé non vide de E et u est un vecteur de F.
L’existence voulue est établie en Q3.
Par Pabsurde sl existait v # v’ dans C tels que Yw € C, |Ju —v| < |lu — w| et Yw €
C, lu =o' < flu—w
On aurait alors ||u — v|| = |Ju — '||, et on pourrait appliquer Q2,

v+ ’

2
ceci est en contradiction avec Vw € C, ||u —v|| < ||lu — w||

—+ v

ainsi ||u — < |luw— vl or Y € C car C est convexe

On a établi ‘qu’ﬂ existe un unique v dans C' tel que Yw € C, [[u —v| < [Ju — w|| ‘

I.B - Inégalité de Holder pour l’espérance

Visiblement, on suppose que pour o > 0, la fonction © — % est définie au moins sur RT et
s’annule en 0

Q 5. Soit deux réels positifs a et b.
Sia ou b est nul alors ab =0 < %p—k%.

Sinon, on a % € [0,1] et par concavité du logarithme sur ]0, +o0[, on a :

;m (a?) + <1 - ;) In (%) < In <;ap 4 (1 - ;) bq>

d’ott In(a x b) < In (%p + %)

. aP a4
Comme exp est croissante, on peut conclure que dans tous les cas : [ab < — + —
p q

Q 6. On remarque que comme l'univers est fini, les variables aléatoires admettent des moments
a tout ordre.

Par positivité de I'espérance, on a : E(|X?) > 0 et E(]Y]?) >0
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Premier cas : On suppose que E(|X|P) = E(]Y|?) = 1.
Pour tout w € ©, on a | X (w)Y (w)] < |X(;J)|p + ‘Y(Z;Nq d’apres la question précédente
done | XY| < X7+ L[y
dou E (| XY]) < %E (|1XP) + %E (|Y'|?) par croissance et linéarité de I’espérance
done B(IXY]) < L +1 =1 = E(X]P)E(Y]?)

Deuxieéme cas : On suppose que E(|X?) >0 et E(]Y]9) >0

kmmA:EWW%X:AMXM:EMWNnW:MMY

Ainsi on a E(|X’|P) = E(]Y’|?) = 1 et on peut appliquer le premier cas & X' et Y’

donc
XY >
<1

B (IX'Y"]) < E(X'P)E(Y']7) et ainsi B <‘W

ce qui donne E (|XY|) < AVPul/1 = E (| X[P)V/PE (Jy|7)!/e
Troisieme cas : On suppose que E(|X|P) =0 ou E(|Y|?) = 0.
Sans perte de généralité, traitons le cas E(]X|P) = 0.

Alors ) |z[PP(X = z) = 0 selon la formule du transfert
zeX(Q)

Comme il s’agit d’une somme finie de réels positifs, on a Vo € X(Q2) \ {0}, P(X =
x)=0

donc X est nulle presque stirement donc il en est de méme pour XY et aussi pour
| XY

dott E(|XY]) =0 =E (| X[")/PE(|y]9)"/

EB(IXY[) <E(X]P) P E (Y1)

Conclusion : Dans tous les cas, on a | E(|XY]) < E (| X[P)YPE (v |99

1.C - Espérance conditionnelle

Q7.0naEWX)= Z z - P(X = z) or selon la formule des probabilités totales avec
z€X(Q)
(Aq,..., Ap) un systeme complet d’événements de probabilités non nulles, on a V: € X (),

P(X=2)= Zm:PAi(X =zx) -P(4)
i=1

donc B(X)= > ) z-Py(X=2)-P(A)=> PA) > z-Py(X=u)
zeX(Q) i=1 i=1 reX(Q)
ce qui permet de conclure : |E(X) = ZP(AZ-) -E(X|4;)
i=1

I.D - Variables aléatoires a queue sous-gaussienne

Q 8. Notons X2(2) = {y1,...,yn} o1 0 < y1 < --- < y,,. Pour simplifier les notations, on pose
aussi yo = 0.
On remarque pour commencer que la fonction définie sur [0, +oo] par ¢ — tP(|X| > t) est
une fonction en escalier car elle est constante sur tout intervalle de la forme |\/y;—1, /¥
pour i € [1,n]. Elle est de plus nulle sur |,/y,, +oc[. On en déduit que I'intégrale du terme
de droite est une intégrale convergente.
De plus, par relation de Chasles,

+o0 n VYi
2J/ tP(|X| > t)dt = }E:2L/ﬁ tP(|X| > t)dt
0 i=1 JV¥i-1

n Vi
= Yoee(xizvin [
i=1

V¥Yi-1
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Q9.

Q 10.

Q 11.

Q 12.

Q 13.

La deuxieme égalité venant du fait que ¢ — P(|X| > t) est constante égale a P (| X|

sur ]\/yiflayi]'

On en déduit que

+oo n
2 [TR(XIZ 0 = PO > Vi~ )
=1

n n—1
= Zy,-P<|X| > Vi) = Y uP(X| > Vi)
i =0

> Vi)

= Zyz (X1 = Vi) = PUX] = Vyir)] + ynP(IX] = V/yn)

Or P(IX| > i) — P(X| = gi1) = P(IX]| = i) et P(IX] > /yn) = P(IX]

donc

+oo
2(/£ P(X|> j{:zh (1X] = ZE:ZA =y) = E(X?)

La fonction ¢ — at exp(—bt?) est continue et positive sur [0, +oo[ (1)

t=A
Soit A > 0. On a Q/at exp(—bt?) dt = [ab exp(—btz)} = —% exp(—bA?) + —
o t=0
A
.. 2 a
Ainsi /atexp( bt*) dt joo 5

0
ce qui prouve l'intégrabilité de t — at exp(—bt?) sur [0, +oo[ avec (1)
De plus V¢ > 0, tP(|X| > t) < at exp(—bt?)

+oo +oo
dou |E(X?) =2 / tP(|X|>1t)t <2 / at exp(—bt?) t = %
0 0

Soit ¢ € R. Soit z € R.
On a |z + 0| > |z| + |J] selon 'inégalité triangulaire

ce qui permet de conclure que ‘P(|X +0|>2t) <P(X|>t— |5])‘
Soit t € R. On a

2 12 _ 2
a— % — (=b(t —6])?) = o — 2b|6|t + a + b6* = b(t§|5’)+ —b5% >0
2 t2b
comme b|§|? < a, ceci prouve | —b(t — [6])? < a — 5

Soit t € R tel que t > |0].
En servant de Q10. puis de '’hypothese en I.D car t — |§] > 0, on a

P(|X +0] > t) <P(IX] >t —[d]) < aexp (~b(t —1d])*)

Puis en utilisant la croissance de ’exponentielle et Q11.,

1
on obtient : | P(|X + 6| > t) < aexp(a — bt?/2) = aexp(a) exp(—ibt2)

¢

. b

donc —ibt2 > —% et aexp(a) exp(—3bt?) > aexp(a) exp(—%)a = aexp(%)
|

Sio<t<|f,onat?<d<

D’apres 'inégalité sous-gaussienne en t =0, on a 1 = P(|X| > 0) < aexp(0) =a
d’olt aexp(a )exp(—fth) lexp(1/2) > 1> P(| X + 4| > ¢)
<t < |6

On a justifié que
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II. L’inégalité de concentration de Talagrand

II.A - Etude de deuz cas particuliers

Q 14.

Q 15.

Q 16.

Q 17.

On suppose que C est un convexe fermé ne rencontrant pas X () alors (X € C) est
I’événement impossible

1
ainsi dans ce cason a |P(X € C) - E <exp <8d(X, C)2>> =0<1

n

Je note u = ) w;e; ou les u; sont les coordonnées de u dans la base (eq, ..., e,)
i=1

Pour w € Q, on a par calcul dans une base orthonormée :

1 2 X W)l - (Eilw) —w)?
X @ =T =) =
(ei —wi)’

4

Comme u; € {—1,1} et que ¢; est a valeurs dans {—1, 1}, alors Y; est & valeurs dans {0, 1}

1
De plus (Y; =0) = (¢; = u;) et donc P(Y; =0) = 7 Ainsi Y; — B(1/2).

Pour i € [1,n], je note Y; =

1 n
De plus Zd(X (w),u)? = Y. Y; et les Y; sont indépendantes par lemme des coalitions.
i=1

1
Ce qui permet de conclure que Zd(X ,)? suit une loi binomiale de parameétres n et 1/2

1
D’apres ce qui précede Zd(X ,u)? est & valeurs dans [0,n

]
et Vk € [0,n], P (id(X, w)? = k) =) (L)) = ()

n

1 1"
donc selon le binome de Newton : | E (exp <8d(X, u)2>> = <\/é + )

e+ 1
2

Comme e <3<9,0onal<

1
< 2 et donc | E (exp <8d(X, u)2>) < 2"

Ona|d(X,C) = in(fjd(X,v) < d(X,u)
vE

De plus comme X(Q)C ={u},ona (X € C) = (X =u) = ﬂ(sl = u;) en reprenant
les notations de Q14.
Donc par indépendance mutuelle des €;, on a

P(X EC) :ﬁP(Ei :ui) = —

i=1

Comme les facteurs sont positifs et a l'aide de la question Q 16, on a P(X € C) -
E (exp (£d(X,0)?%)) <1

‘On a bien 'inégalité (II.1) dans ce cas‘
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I1.B - Initialisation

Q 18. Pour le cas n =1, j'identifie ¥ a R et X a &1 qui suit donc une loi de Rademacher
On a donc X(Q) = {—1,1} et comme C'N X () contient au moins deux éléments
alors X(Q) ={-1,1} =CNX(Q) C C et donc (X € C) = est "événement certain
d’olt d(X,C) vaut certainement 0 et donc (exp (1d(X,C)?) est constante égale 1

dou|pourn=1,onaP(X €C)-E (exp (éd(X, 0)2)) =1x1=1<1 selon Attila

CNHp
H,

X'(w)
o S f

—e,
*
Hoy X(w)
CNH_,
Illustration dans le cas ol &,, = —1

Q 19. Soit 2’ € E' et t € {1,—1}.
< : On suppose que : 2’ +te, € C. On a donc x’' + te, € CN Hy car ' € E'.
Comme 7 est une projection et que #’ € E' = Imm, on a w(z') = 2
et que Ker(r) = Vect(ey,...,e 1)~ = Vect(e,), on a m(e,) =0
Par linéarité m(z' + te,) = 2’ don 2’ € 7(C' N Hy) = Cy
= : Onsuppose que : 2’ € C; = 7(CNH). Ceci nous fournit y € C'N Hy tel que 2’ = 7 (y)

n n—1
On écrit y = Zyiei ot les y; € R On a donc 2/ = 7(y) = Zyiei
i=1 i=1
n—1
et comme y € Hy, on a y — te, = Zyiei + (yn — t)e, € E
i=1
donc (y, —t)e, € E' puis y, =t
et ainsi 2’ +te, =y € C
Conclusion : on a bien : ‘x’ €eCy < 2/ +te, € C‘

Q 20. C; C E': Par définition, on a C; C Im(7) = E’. De méme pour C_;
Cy # () : Par hypothese, CN X () contient au moins deux vecteurs qui different par leur
derniere coordonnée.

n—1 n—1

Ceci nous fournit y = Zyiei +e, €CNX(D) et z= Zziei —e, € CNX(N) ou
i=1 i=1

les y; et les z; sont réels.

n—1 n—1
On note ¢/ = Zyiei et 2/ = Z zie;etonay et 2 e B

i=1 i=1
En utilisant la réciproque de la question précédente, on a 3y’ € C'y1 et 2/ € C_4
Donc Cyq #Det C_1 #10)
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Q 21.

C, convexe : Ktablissons que C;1 est convexe et ce sera analogue pour C_;

Soit z,y € Cy;. Soit A € [0, 1]. Montrons Az + (1 — \)y € C4q.

Onaxetye E donc Az + (1 — Ny € E' car E’ est un sous-espace vectoriel
Deplus Az + (1 =Ny +e, =Nz +e,)+ (1= AN)(y+en)

Or en utilisant le sens direct de Q19., onax+e, € Cety+e, € C
Comme C' est convexe, on a donc Az + (1 — Ny +e, € C

d’ott Az + (1 — \)y € C} par la réciproque de Q19.

C, fermé : Etablissons que C.1 est fermé de E’' et ce sera analogue pour C_;.

Soit (ug)ken une suite & valeurs dans Cy1 qui converge vers ¢ € E’. Montrons que
e Cyy

Pour k£ € N, on a comme ci-dessus uy, + e, € C

or par somme (T + ep)pen converge vers £ + e,.

Comme C est fermé de E,ona fl+e, € C,

comme ¢ € E’, on a bien ¢ € C,1 d’apres Q19.

Conclusion : On a bien ‘ C41 et C_1 sont des convexes fermés non vides de E’ ‘

(en =1) et (g, = —1) forment un systéme complet d’événements de probabilités 1/2 donc
selon la formule des probabilités totales :

PXeC)=P(XeCe,=1))+P(X €C,e,=-1)

Soit w € €. Soit t € {—1,1}.
On a X(w) = X'(w) + en(w)e, et X'(w) € E' et e,(w) € {—1,1} donc d’apres Q19 :

(Lo = {8050

Ainsi P(X € C) =P (X' € Cy1,en=1)) + P (X' € C_1,6,, = —1)
n—1

Or X' = 3 e;e; et g, sont des variables aléatoires indépendantes par le lemme des coali-
i=1

tions. D’on

P(XeC)=P(X €Cp1) -Plen=1)+P(X €C_y) -P(e, = —1)

1 1
On a donc bien |P(X € C) = §IP’(X' € Ci1)+ §P(X’ €eC_y)

II.D - Une inégalité cruciale

Q 22.

Q 23.

Soit w € 2. On a Y, () (w) € O, ()
donc Y, ()(w) + enen(w) € C d’apres Q19. et de méme Y_, () (w) — enen(w) € C donc

(1=X) (Y2, () (@) +enen(@)) + A (Yo, () (w) — enen(w)) € C
car C convexe et A € [0,1] d’out

d(X(w),C) < I(1 =) (Y2, () (W) + nen(w)) + A (Yor, ) (@) — Enen(w)) — X ()]

On a bien montré ‘al(X7 C) < ||[(T =AYz, +enen) + A(Y_q, —enen) — X|| ‘

Ona X = X'+¢ene, done (1 =N)(Y;, +epen) +AY_o, —enen) — X = (1= A) (Y, — X') +
AY_e, — X' — 2enen)

ainsi (1 —=A)(Yz, +enen) +A(Yoe, —enen) — X = (1=A)(Y;, = X))+ A(Y_., — X') —2Xepey,
La variable aléatoire 2\ep e, est a valeurs dans Vect(ey,) et (1—X\)(Yz, — X" )+ A(Y_., — X')
a valeurs dans F’

or E' 1 Vect(ey,) et |le,|| = 1 donc selon le théoreme de Pythagore

11 = N)(Yz, +enen) + A(Yoe, = enen) = X2 = 422 + (1 = ) (Ye, = X') + A(Yoe, — X)|?
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on en déduit avec la question précédente que
d(X,C)? <4+ (1 = N)(Yz, = X)) + A=, — X))

Soit u et v € E. Montrons Vt € [0,1], (1 —#)|jul|® + t||v]> = |(1 — t)u + tv|?

Je pose Pt (1 —t)|jul]® +tv||* = ||(1 — t)u + tv|)?

Soit t € R. On a P(t) = ((1 —t) — (1 = t)?) [Jull® + (¢t — £?) [Jv]|* — 2¢(1 — ¢){u,v)

done P(t) = t(1 =) [[lull® + [lv]]* = 2(u, v)] = t(1 = t)[lu — v|]®

d’ou Vt € [0,1], P(t) > 0 d’ou le résultat.

En appliquant ceci a t = A\, u =Y, (,)(w) — X'(w) et v =Y_, () (w) — X'(w) pour w € Q
on obtient :

d(X,0)? AN+ (1-N) (Ve =X )HAY -, = X)[? AN +(1-N)|| Yz, =X +A Y-, — X7

Ainsi, on a montré l'inégalité | d(X, C)? < 4X* + (1 — N)d(X',C.,)> + Md(X',C_., )?

II.LE - Espérances conditionnelles

Q 24. Comme C' N X () contient au moins deux vecteurs qui different par leur derniere coor-
donnée,

n—1
ceci nous fournit 2’ = > x;e; € E' tel que {2’ +e,,2" —e,} CCNX(Q)
i=1

Ainsi d’apres Q19., 2’ € C_; et donc (X' =2') C (X' € C_y)
n—1
or (X'=2')= ﬂ (e; = z;) donc par indépendance des ¢; on a

=1

n—1
]P;(X/ — m/) — H ]P)(gZ — x’l,) = 2n_1
=1

et donc P(X' € C_1) > P(X' =2') > 0 dou

Q 25. Lemme 1 : Soit X et Y deux variables aléatoires réelles, f : Rx Y (Q) — Ret k € R
tels que P(Y =k) >0. On a :

E(f(X.Y)]Y = k) = E(f(X.H)Y = k)

Par transfert (toutes les sommes sont & support fini),

E(f(X, Y)Y =k) = Y fl@,y)PypnX =2 =y)
z,yeR
- x%e:]}ef(x’y) P(Y = k)
= P(X =2,V =k) )
) x%:af(m) Py =k CUGR Y =k)

carpoury # k, P(X =z,Y =y, Y =k) =P(0) = 0.
Lemme 2 : Soit X et Y deux variables aléatoires réelles indépendantes et k € R tels
queP(Y =k)>0.0Ona:
E(X|Y =k) =E(X)

I suffit d’utiliser la définition de l'espérance conditionnelle et de remarquer que
Pry=p)(X =2) =P(X =x)

Soit A dans [0, 1]. On a d’apres Q23. :
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o (57 con () o (55) o (62
Diaprés le lemme 1< E ((exp (W))“ . <exp (W))A e = _1> _
(o () (5 )

! 2 1-A / 2 A
Avec le lemme des coalitions, les variables aléatoires €, et (exp (%)) . (exp (%))

sont indépendantes car &, et de X’ le sont ; puis le lemme 2 donne :

e (o (15 (T8 ey = 1) i (e (1) (15) )

A Taide de (%), de la croissance et la linéarité de I’espérance conditionnelle, on obtient :

E <exp (‘“XSC)Q> len = —1) < exp <A22> E ((exp (W))H | <exp <d(‘X/801)2>>)\>

Q 26. On suppose A €]0,1[. On pose p =

1 1 1 1
et q=— desortequep>0,g>0et —+-—=1
1—A A p q

D’aprés Q6, pour Y et Z variables positives, on a Y1/ = ’Yl/p} et ZV1 = ‘Zl/q’ :

& (Yl/pzl/Q) <E ((Yl/p)p)l/pE ((Zl/q>q>1/q —E(Y)/PE(2)"

donc
E (Yl_’\ZA> <E(Y)E(2)

En appliquant ceci au résultat de Q25., on obtient pour tout A €]0,1] :

3 (o ("5 b =t) <o () (3 (o (5525))) e (o (555)))
oo (2 (5 (o (“0C )Y 7 (o (o (P25 )) it com

nue sur [0, 1]
On déduit en passant & la limite en 0 et 1 que pour tout A € [0,1], on a :

(o0 (5 ko= t) <o (5) (2 (o0 (555)) (o0 (5))

Q 27. On utilise la question précédente en A = 0, on échange +1 et —1 qui jouent des roles
symétriques. puis on multiplie par p4 > 0 pour obtenir :

o (5 1) o (5550

On a donc p, - E (exp <d(X'01)2>> =P(X'€Cy)-E (exp <‘W>>

8 8
n—1
or X' = Y g;e; est a valeurs dans l'espace euclidien E’ de dimension n — 1 de base ortho-
i=1
normée (e1,...,e,-1), C1 est un convexe fermé non vide de E’ et les €; sont indépendantes

et suivent la loi de Rademacher d’ou par hypothese de récurrence, on peut appliquer (II.1) :

o (e (2557)))
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Enfin comme py > 0 selon Q24. (p+ et p_ jouant des roles symétriques), on a alors

1 1
E <exp <8d(X, C)2> len = 1> < "

Q 28. On utilise la formule des probabilités totales sur les espérances conditionnelles de Q7. avec
le systeéme complet d’événements : (e, = t);c;_1,1} de probabilités 1/2 qui est non nulle :

donc

1 ) 1 1 ) 1 1 )
E ( exp §d<X’ C) = iE exp gd(X, C) | len =1 +§E exp §d(X’ C) ) len=—1
Soit A dans [0, 1]. On applique les deux questions précédentes :

1 1(1 A2 ax’,c)2\ )\ d(X’,C1)2\
2 (o (qauxer)) < (i vom (5) (2 (o0 (50))) (e (5577))
En utilisant I’hypothese de récurrence comme a la question précédente on a :

d / B 2 / 2
8 p- 8 P+

1 1 9 1(1 A2 1 1
On en déduit que | pour tout A dans [0,1] : E | exp gd(X, ) < 2\ +exp | — ( :
p_

b+

II.F - Optimisation

Q 29. Quitte a remplacer e, par —e,, on peut supposer que 0 < p_ < p4. On a alors A =
— 2= €10, 1] donc d’apres Q28 :

P+
E (eXp (;d(X, 0)2)> < 2;+ <1+exp </\22) (if)l_A)
w0 = () (1)

2
Ainsi on a bien | E { exp 1d(X, C)?) ) < 1 1+ exp X (1— M1
8 2p+ 2

Q 30. Jepose g:x+— In(2+2x) —In(2 —z) — %2 — (z —1)In(1 — x) qui est € sur [0, 1] par
théoremes généraux.

1 1
Soit 0,1 "(z) = —xz—1—1In(1-
oit x € [0,1[, on a ¢'(x) 2+a:+2—x x n(l —z)
1 1 1 8z x
t ' (z) = _ 1 - >0
G o PRl o Srupn A Byl B TG Bum pAL g

ainsi ¢’ est croissante sur [0, 1]
De plus ¢’(0) = 0 donc Vx € [0,1[, ¢'(z) > 0.
d’olt g est croissante sur [0, 1] et comme g(0) =0, on a Vz € [0, 1], g(z) > 0.

2
On a montré que | pour tout x € [0, 1], % +(z—-1)In(1—2)<In(2+2)—In(2 —x)

Q 31. Soit x € [0, 1[. En appliquant ’exponentielle a I'inégalité précédente, on obtient :

2
2
exp (Z) (1—2)" 1< T

D

d’ou| 1+ exp <
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Q 32. En utilisant la question précédente et Q29., et comme A € [0,1] car A = 1 — i—; et
0<p_<pgy,ona:
1 1 4
E ~d(X,C)? < ——
<exp<8 %:€) )) 2p+2—=A

Or p+(2 — )\) =Py (1 + ]p;_) =py +p— d’ou
+

E <exp (;d(X ) )) mip_

2 P+ +Dp-
donc comme S—=— >0, on a TE <exp <8d(X ) >) 1

A Paide de la question 21, par définition de p; et p_, on a :
1
P(X e€C)-E <exp <8d(X, 0)2)> <1 (IL.1)

on vient de terminer 1’hérédité (commencée en IIC) de notre démonstration par récurrence
dans le cas o C'N X (w) contient au moins deux éléments, mais la formule reste vraie si
C' N X(w) a au plus un élément d’apres ITA (Q14-17).

De plus l'initialisation (le cas ou la dimension est 1) a été traitée en ITA ou IIB(Q-18)

selon le cardinal de C'N X (w). Ainsi ‘l’inégalité (I1.1) a été démontrée par récurrence‘

II.G - Inégalité de Talagrand

Q 33. Soit C convexe fermé non vide de E et t réel strictement positif. D’apres ce qui précede

r(x £ 02 (o (159 ) < o

. 2
or par croissance sur R™ de z — exp <%), on a:

P(d(X,C)>t) =P (exp (Cl(XéC)Q) S ( ))
et exp

En appliquant Markov avec la variable aléatoire positive exp (

| )
| exp <tg> 'P(d(X’C)>t)<E<eXp< ))

2
done P(X € C) - exp <t8> P(d(X,C) > t) <P(X € C)-E <exp ( (X,0) >)
On en déduit I'inégalité de Talagrand :

<%> > 0 on

Pour tout C' convexe fermé non vide de E et pour tout réel ¢t strictement positif

P(X € C)-Pd(X,C) >t) < exp <—t82>

IT1I. Démonstration du théoréme de Johnson-Lindenstrauss

IIT.A - Une inégalité de concentration

Q 34. Fermée L’application M € My, 4(R) — M -u est linéaire donc continue car dim (My, 4(R)) =
kd < co. Donc par composition g est continue sur My, 4. Or [0, 7] est une partie fermée
de R donc C = g1 ([0,7]) est une partie fermée de My, 4(R)
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Q 35.

Q 36.

Q 37.

Convexe Soit M et N € C. Soit A € [0,1].
A Taide de l'inégalité triangulaire et 'homogénéité, on a
JAM+(1=A)N) = [|[AM -u+(1=A)N-u| < M|M-ul|[+(1=N)[|N-ul]| < A+1=N)r=r
dou A M+ (1-ANNeC

On a bien montré que|C' = {M € My 4(R) | g(M) < r} est une partie convexe et fermée de My, 4(R)

Soit M = (m;;)1<i<k dans My q(R).
1<j<d

2
k d k
j= =

i=1

2
d
> My juj
i=1

On applique k fois Cauchy-Schwarz dans R?, ce qui donne :
d d d

M -l <Y mi | <\ o] | =2
i 1 j=1 =

i=1 j= i=1j

2
mj ;
1

d
car Z:lug =|ul?=1
j:

Ce qui permet de conclure que ’ |M - u| < ”M”F‘

Soit M dans My, 4(R) telle que d(M,C) <t
On a 0 € C donc selon Q34., C est une partie fermée convexe non vide de ’espace euclidien
My.a(R)

Ceci nous fournit donc V' € C' tel que d(M,C) = ||M — V||F et donc |M —V||p <t
Onag(M) =M ul| =[(M=V)-u+V-ul| <[[(M=V)-ul +[V-ul

Ainsi selon 'inégalité triangulaire et la question précédente : g(M) < |M — V|| + r car
Vel

d'ou g(M) <r+t

Ainsi | pour toute matrice M dans My 4(R), d(M,C) <t= g(M) <r+t

On peut appliquer le théoreme de Talagrand avec ’espace euclidien .#, 4(R) de dimension

kd muni de la base canonique orthonormée (E; j)1<i<k, la variable X = > ¢; ;E; j ot les
1<j<d 1<i<k
1<j<d

€;,; sont mutuellement indépendantes suivant une loi de Rademacher et C' convexe fermé
non vide de .}, 4(R) :

P(X € C)-Pd(X,C) >t) <exp <—t82>

Or (X € C) = (g(X) < r) par définition de C et (g(X) = r+1t) C (d(X,C) > t) par
contraposée de Q36.

On en déduit que |[P(g(X) <7)-P(g(X) > r+1t) <exp <—>

IIl.B - Médianes

Q 38.

Comme (2 est fini, g(X) prend un nombre fini de valeurs,

on peut alors noter g(X) ={y1,...yn} oin € N et y; < -+ < yp.

Posons S; = P(g(X) < yx) = P(g(X) = y1) + ... + P(g(X) = yx) pour tout k£ € [0,n].
(avec la convention yy = —o0)

Onal0=5<5<...<5, =1

Soit kg = min{k € [1,n] | Sk > %} (comme S,, = 1, cet ensemble est une partie non vide
de N*) Alors Sk,—1 < % < Sk (y compris si kg = 1).

Ainsi P(g(X) < i) > § et P(g(X) < k) = P(9(X) = py) + - + P(9(X) = g) =
1-— Skofl > %

Donc ‘yko est une médiane de g(X). ‘
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Q 39. Soit t > 0. En appliquant Q37. ar =m puisr =m —t,on a :
2

2
P(g(X) < m)-P(g(X) > m+t) <exp (—tg) et P(g(X) < m—t)-P(g(X) > m) < exp (_2)

Puis a l'aide de la question précédente et par somme

2
P(g(X) > m+1) + P(g(X) <m — ) < dexp (tg)

Comme (|g(z) —m| > t) = (g(X) =Zm+1t)U (9(X) <m —t) (union disjointe)

12
On a|P(|g(x) —m| >t) < 4dexp <_8> ou m est une médiane de g(X)

Q 40. La variable aléatoire réelle g(X) — m vérifie les hypotheése du 1.D, en prenant a = 4 et
b=1/8

A T'aide de Q9., on déduit que |E((g(X) —m)?) < 32

2
k d
Q 41. On a g(X)? = || Xu|* = 2 (Zﬁ@juﬂ‘)
]:

i=1
A i e [1;k] fixé, on a
2

d d

2 2
E €i,jUj = E 8i,juj+2 E €4,jUjE4 pUg
Jj=1 Jj=1

1<j<e<d

La variable 5?7]- est constante égale & 1 pour tout j et pour £ # j, on a par indépendance
et linéarité :
E (i ujeioue) = ujugE (€55) E(g50) =0
(loi de Rademacher)
d 2 d
Donc E Z gijuj | = Z u? = ||u||* = 1 Par somme on peut conclure que|E(g(X)?) = k
j=1 Jj=1

On applique Q6 & g(X) = |g(X)| et Y =1 et p = ¢ = 2 pour obtenir | E(g(X)) < Vk

On aurait pu faire appel a Cauchy-Schwarz.

Q 42. Par linéarité et espérance de constante puis en utilisant la question précédente car m > 0
car P(g(X)>0)=1

E((9(X) —m)?) = E((9(X)?) — 2mE(9(X)) +m* > E((9(X)?) — 2mVk + m?

On en déduit que | (VEk — m)? < E((g(X) —m)?)

II1.C - Un lemme-clé
Q 43. On sait déja que g(X) — m est a queue sous-gaussienne avec a =4 et b =1/8
On a (g(X) = V&) = (9(X) = m +m - Vk)

Je pose alors § = m — vk et ainsi 62 = (m — vVk)? < 32 = ¢ d’apres Q40. et Q42.
On a bien 0 < |d] < \/%. On peut donc utiliser Q12. et Q13.,

1
pour conclure que| pour tout réel strictement positif ¢ : P(|g(X) — V| > t) < 4exp(4) exp <_16t2>

Q 44. On a (|| Apu] = 1] > ) = (|IX - ull = V| > eVk) € (I9(X) — V| > eVk)

ainsi en utilisant la question précédente avec t = evk > 0 on a

1
P(|[[ Aull — 1] > £) < 4exp(4) exp (—mw)
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Comme k > 160M >0,ona:

2

4exp(4)6 _exp(4)

29 o7 0

P(|||Apul| — 1| > €) < 4exp(4) exp (101n(0)) = 4exp(4)6'° <

exp(4)

A Daide la calculatrice : o7

> 1 donc pour tout vecteur unitaire u dans R? : ‘]P’(\ |Agul| — 1] > ¢) < 5‘

III.D - Conclusion
Q 45. On applique Q45. avec u =

[lvi—

Qae.ona e[ () Bu)=r[ U Fl< ¥ rEn< ¥ o= YO,

1<i<j<N 1<i<j<N 1<i<j<N 1<i<j<N
. : N(N -1
En passant a I’événement contraire on obtient | [P m Ei;|l>1- (2)5
1<i<j<N

Q 47. Je pose alors ¢ = 320 > 0. Soit € €]0, 1[. Soit N et d entiers > 2. Soit vy, ... vy distincts
dans RY,

In(NV 1
Jeprends k € Ntelque k > ¢ n; ) Je choisis § = N2 €10,1/2[ de sorte que k > 1601“(81%

On a alors P ﬂ E;; | > 0 donc ﬂ Eij #0

1<i<j<N 1<i<j<N
Ce qui donne une matrice A qui donne f qui convient D’ou le théoréeme de Johnson et
Lindenstrauss.
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