MP1 / MP2 Devoir Surveillé 6 (plus difficile) 2025 - 2026

L’utilisation des calculatrices n’est pas autorisée pour cette épreuve.
Quand on utilise un résultat précédemment démontré, il faut citer explicitement le numéro
de la question.

Notations

— Dans tout le probleme, N, k et d désignent des entiers supérieurs ou égaux a deux.

— Pour tous entiers naturels p et ¢, avec p < ¢, la notation [p, ¢] désigne I’ensemble
{ieN| p<i<q}.

— Dans tout le probleme, on note (£2,.4, P) un espace probabilisé fini. Toutes les variables
aléatoires considérées sont définies sur €.

— Pour tout événement A de probabilité non nulle, et pour tout événement B, on note P 4(B)
ou P(B|A) la probabilité conditionnelle de B sachant A.

— Etant donnée une variable aléatoire Z a valeurs réelles, on note E(Z) son espérance.

— On dit qu’une variable aléatoire Z est une variable de Rademacher lorsque Z(§2) = {—1,1}

et 1
P(Zzl):P(Z:—l):§
— De fagon générale, si E est un espace euclidien, son produit scalaire et sa norme seront
respectivement notés (- | -) et || - ||. Ces notations seront utilisées notamment pour R? et

R*, munis de leurs structures euclidiennes canoniques.

— Soit C une partie d’un espace vectoriel E. Elle est dite convexe si

V(z,y) € C?Vte[0,1], tx+ (1 —t)y € C

Problématique

On s’intéresse a la question suivante : étant donnés IV points dans un espace euclidien de grande
dimension, est-il possible de les envoyer linéairement dans un espace de petite dimension sans
trop modifier les distances entre ces points?

Pour préciser cette question, considérons N vecteurs distincts vy, ...,vy dans R%. Pour tout
réel € tel que 0 < € < 1, on dit qu'une application linéaire f : R? — RF est une e-isométrie
pour vy, ...,vN lorsque :

V(i,5) € [L,NJ?, (1 = e)llvi — wjll < [1f (i) = F(wy)ll < (1 +€)llvi — vy

La question peut se reformuler ainsi :
Objectif
Pour quelles valeurs de k existe-t-il f : R4 — R¥ qui soit une e-isométrie pour vy,..., vy ?

On se propose d’établir le théoreme suivant, démontré par William B.Johnson et Joram Lin-
denstrauss en 1984 :

Il existe une constante absolue ¢ strictement positive telle que :

quels que soient N et d entiers naturels supérieurs ou égaux a 2 et quels que soient
v1,...,vn distincts dans R?, il suffit que

pour qu’il existe une e-isométrie f : R% — R* pour vq,...,vy.

Les seules méthodes connues a ce jour pour démontrer ce résultat sont de nature probabiliste.
Dans la partie I, on établit des résultats préliminaires portant sur la convexité et les probabilités.
La partie II est consacrée a la démonstration d’une inégalité de concentration, qui est utilisée
dans la partie III ou le théoreme de Johnson-Lindenstrauss est démontré.
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I. Préliminaires

I.A - Projection sur un convexe fermé
Soit F un espace euclidien.

Q 1. Soient a et b dans E. Montrer la relation suivante et en donner une interprétation géométrique :

la + BI[* + fla = blI* = 2([lall* + [1bII*)

Q 2. En déduire que si u,v et v’ dans E vérifient v # v’ et ||u — v|| = ||u — 2’| alors
v+
U < |lu — v

Q 3 (admise) Soient F' un fermé non vide de E et u dans E. On admet qu’il existe v dans F tel que
Vw e F, ||lu—o| < |u—wl|

Q 4. En déduire que si C est un convexe fermé non vide de F et u est un vecteur de E alors il
existe un unique v dans C' tel que

Vw e C, flu—vf| < flu—w]

On dira que v est le projeté de u sur C' et on notera d(u,C) = ||ju — v||.

I.B - Inégalité de Holder pour l’espérance

Soient p et g deux réels strictement positifs tels que ]% + % =1.

Q 5. Montrer que, pour tous réels positifs a et b,

aP  b?
ab< —+ —
p q
On pourra utiliser la concavité du logarithme.

Q 6. En déduire que si X et Y sont deux variables aléatoires réelles sur ’espace probabilisé fini
(Q,A,P) alors
E(XY|) <E(XP)/P By

On pourra d’abord montrer ce résultat lorsque E(|X|P) = E(]Y]?) = 1.

1.C - Espérance conditionnelle

Soit X : € — R une variable aléatoire a valeurs réelles.
Pour tout événement A C Q de probabilité non nulle, ’espérance conditionnelle de X sachant
A, notée E(X|A), est par définition le réel

E(X|A) = ) PaX

z€X(Q)

En d’autres termes, E(X|A) est I'espérance de X dans l’espace (2, 4, P 4).
Les propriétés usuelles de linéarité et positivité de I’espérance, qu’on ne demande pas de redémontrer,
sont ainsi valables pour 'espérance conditionnelle sachant A.

Q 7. Soit (Ay,...,A;,) un systéme complet d’événements de probabilités non nulles. Montrer
que
m
E(X) =) P(4) E(X|4)
i=1
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I.D - Variables aléatoires a queue sous-gaussienne

Soit X : € — R une variable aléatoire réelle.
On suppose qu’il existe deux réels strictement positifs a et b tels que pour tout réel positif ¢,

P(|X| >t) < aexp(—bt?)

Q 8. Montrer que
+oo

E(X?) =2 / tP(|X]| > t) dt
0
On pourra noter X2(Q) = {y1,...,yn} avec 0 < y1 < y2 < -+ < Yn.

a
9. Montrer que le moment d’ordre deux de X est inférieur ou égal a —.

Soit ¢ un réel tel que 0 < [0] < %.
Q 10. Justifier que, pour tout réel t,
P(|X 40| >t) <P(X[>t—|d])
Q 11. Montrer que, pour tout réel ¢,

2
bt~ 0)? <a-

Q 12. En déduire que pour tout réel ¢ tel que ¢t > |d| on a
1
P(|X + 0| >t) < aexp(a)exp (—th2>

Q 13. Justifier que l'inégalité précédente reste valable si 0 < ¢ < |d].

II. L’inégalité de concentration de Talagrand

Soit E un espace euclidien de dimension n > 1 muni d’une base orthonormée (eq,...,ey).
Soient e1,...,&, : © — {—1,1} des variables de Rademacher indépendantes.

n
On pose X = > ge;.
i=1
L’objectif de cette partie est de montrer, pour tout convexe fermé non vide C de F,

P(X €()-E (exp <;d(X, 0)2>) <1 (IL1)

II.A - Etude de deuz cas particuliers

Q 14. Traiter le cas ou C' est un convexe fermé ne rencontrant pas X (2).

On suppose dans la suite de cette sous-partie II.A uniquement, que C est un convexe fermé de
E qui rencontre X (£2) en un seul vecteur u.

1
Q 15. Montrer que Zd(X ,u)? suit une loi binomiale de parametres n et 1/2.

1
Q 16. En déduire I’espérance de exp <8d(X , u)2> et montrer qu’elle est inférieure ou égale a 2™.

Q 17. Justifier que d(X,C) < d(X,u) et en déduire 'inégalité (II.1) dans ce cas.

I1.B - Initialisation

On suppose désormais que C' est un convexe fermé de E tel que C' N X (Q2) contient au moins
deux éléments. Quitte a permuter les vecteurs de la base, on peut supposer que ces deux vecteurs
different par leur derniere coordonnée.

On se propose de démontrer I'inégalité (II.1) par récurrence sur la dimension n de E.
Q 18. Traiter le cas n = 1.
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I1.C - Propriétés

Soit n un entier tel que n > 2. On suppose a présent que (II.1) est vérifiée au rang n — 1.
On note E' = Vect(eq,...,e,—1) et m la projection orthogonale sur E’

n n—1
™ E Ti€; — E Ti€;
i=1 =1

On pose X' =mo X = nzl gie;. Cest une variable aléatoire a valeurs dans E'.
i=1
Pour t € {—1,1} on note
— H; I'hyperplan affine E' + te,, ;
— Cy=m(CNHy).
Q 19. Montrer, pour 2’ € E' et t € {1,—1}, que 2/ € Cy < 2/ +te, € C
Q 20. Montrer que Cy1 et C_1 sont des convexes fermés non vides de E'.

Pour t € {—1,1}, on note Y; le projeté de X’ sur le convexe fermé non vide C;. C’est une variable
aléatoire a valeurs dans E'.

Q 21. Montrer que
1
P(XeC)= 5 P(X'e€Cy)+ P( e Cy)

II.D - Une inégalité cruciale

Soit A un réel tel que 0 < A < 1.

Q 22. Montrer que
d(X,0) < [[(1 = MY, +enen) + AMY_e, —enen) — X||

Q 23. En déduire que
d(X,C)* AN +[|(1 = N)(Yz, = X) + A(Y—., — X')|?

puis que
d(X,0)? 4N+ (1 = N|Yz, = X2+ AY=e, = X'|I?

Ainsi, on a montré 'inégalité

d(X,C)? <4X2+ (1= Nd(X',C.,)? + (X', C_,,)?

II.E - Espérances conditionnelles

On note
pr =P(X ' €Cyy) et p_ =P(X' €C_)
On va supposer, sans perte de généralité, que p > p_.
Q 24. Montrer que p_ > 0.
Q 25. Montrer que pour tout A dans [0, 1]

2 (o (55 [ =) <o () (o0 (55)) (0 (555)) )
)

Q 26. En déduire que
(e (e (2525))
P\

o (on () 2) o (5) (s on (527

Q 27. A Taide de I’hypothese de récurrence, justifier que

E<exp<8 (XC)) :1><pl+

Q 28. Déduire de ce qui précede que pour tout A\ dans [0, 1],

E <exp (Sd(X C) >) % <pl++exp ()\22) pll)\ pli)
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II.F - Optimisation
Q 29. On pose A=1— g—;. Montrer que

E <eXp @d(X, C)2>> < 2;+ <1 + exp <A22> 1- )\)’\_1>

Q 30. Montrer que pour tout x € [0, 1],

$2

5 +(z—1)In(1—2) <In2+2) —In(2 —x)
On pourra faire une étude de fonction.
Q 31. En déduire que pour tout z € [0, 1]

2

4
1+ exp <562> (1-—x)*t <

2—x

Q 32. Terminer la démonstration de 'inégalité (IL.1).

II.G - Inégalité de Talagrand
Q 33. En déduire I'inégalité de Talagrand :

Pour tout C' convexe fermé non vide de E et pour tout réel ¢ strictement positif

P(XeC) PX,C)>t) <exp <t82>

IT1I. Démonstration du théoréeme de Johnson-Lindenstrauss

Dans cette partie on consideére I'espace E = .#}, 4(R) muni du produit scalaire défini par
Y(A,B) € E?, (A|B) =tr(A" - B)

On notera ||.||r la norme euclidienne associée.
On rappelle que R? et R¥ sont munis des normes euclidiennes canoniques, notées indistinctement

On identifie R? & .#;1(R) de sorte quun vecteur quelconque z = (1, . .., z4) peut étre identifié
a la matrice colonne (wl :cd)T.
On fixe un vecteur (u1,...,uq) dans R?, identifié comme ci-dessus & la colonne (u1 ... ud)T

de #31(R), et tel que ||ul| = 1. On définit application
g: MeMaR)—||M- ul| eR

Soit X = (&;,j)1<i<k,1<j<d une variable aléatoire & valeurs dans .} 4(R); dont les coefficients
€;,; sont des variables aléatoires de Rademacher indépendantes.

III.A - Une inégalité de concentration

Soit r un réel.
Q 34. Montrer que C = {M € #,q4(R) | g(M) < r} est une partie convexe et fermée de
My a(R).
Q 35. Montrer que pour toute matrice M dans .#, q(R) : [|M - u|| < | M]|F.
Soit ¢ > 0.
Q 36. Montrer que pour toute matrice M dans .#j, 4(R),

dM,C)<t=gM)<r+t
Q 37. En déduire que



IIl.B - Médianes

On dit qu’un réel m est une médiane de g(X) lorsque

Q 38. Justifier que g(X) admet au moins une médiane.

Q 39. Déduire de ce qui précede que, pour tout réel strictement positif ¢

P(lg(X) —m| > 1) < dexp (—2)

ou m est une médiane de g(X).
Q 40. En déduire que E((g(X) —m)?) < 32.
Q 41. Montrer que E(g(X)?) = k et en déduire que E(g(X)) < Vk.
Q 42. En déduire que (vVk —m)? < E((g(X) —m)?).

III.C - Un lemme-clé

Q 43. Montrer que, pour tout réel strictement positif ¢

P(lg(X) — V| > 1) < dexp(d) exp (—116t2)

On pose Ay, = % Soient € dans |0, 1] et § dans |0, 1/2[. On suppose que k > 160%.
Q 44. Montrer que, pour tout vecteur unitaire u dans R :

P(||Ak-ul| -1 >¢) <6

II1.D - Conclusion

On conserve les notations et les hypotheses précédentes.
Soient vy, ...,vyn des vecteurs distincts dans R,
Pour tout (i, j) € [1, N]? tel que i < j, on note E; ; 'événement

(1= e)llvi =yl < [[Ap - vi = Ag - gl] < (14 €)f|vi — vy
Q 45. Montrer que P(E; j) <, out E; j désigne 1’événement contraire de Ej ;.

N(N —1)

5 0.

Q 46. En déduire que P ﬂ E,;|l>1-

1<i<j<N

Q 47. En déduire le théoreme de Johnson et Lindenstrauss.
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