
MP1 / MP2 Devoir Surveillé 6 (plus difficile) 2025 – 2026

L’utilisation des calculatrices n’est pas autorisée pour cette épreuve.
Quand on utilise un résultat précédemment démontré, il faut citer explicitement le numéro
de la question.

Notations

— Dans tout le problème, N, k et d désignent des entiers supérieurs ou égaux à deux.

— Pour tous entiers naturels p et q, avec p ⩽ q, la notation [[p, q]] désigne l’ensemble

{i ∈ N | p ⩽ i ⩽ q}.
— Dans tout le problème, on note (Ω,A,P) un espace probabilisé fini. Toutes les variables

aléatoires considérées sont définies sur Ω.

— Pour tout événement A de probabilité non nulle, et pour tout événement B, on note PA(B)
ou P(B|A) la probabilité conditionnelle de B sachant A.

— Étant donnée une variable aléatoire Z à valeurs réelles, on note E(Z) son espérance.

— On dit qu’une variable aléatoire Z est une variable de Rademacher lorsque Z(Ω) = {−1, 1}
et

P(Z = 1) = P(Z = −1) =
1

2

— De façon générale, si E est un espace euclidien, son produit scalaire et sa norme seront
respectivement notés ⟨· | ·⟩ et ∥ · ∥. Ces notations seront utilisées notamment pour Rd et
Rk, munis de leurs structures euclidiennes canoniques.

— Soit C une partie d’un espace vectoriel E. Elle est dite convexe si

∀(x, y) ∈ C2,∀t ∈ [0, 1], tx+ (1− t)y ∈ C

Problématique

On s’intéresse à la question suivante : étant donnés N points dans un espace euclidien de grande
dimension, est-il possible de les envoyer linéairement dans un espace de petite dimension sans
trop modifier les distances entre ces points ?
Pour préciser cette question, considérons N vecteurs distincts v1, . . . , vN dans Rd. Pour tout
réel ε tel que 0 < ε < 1, on dit qu’une application linéaire f : Rd → Rk est une ε-isométrie
pour v1, . . . , vN lorsque :

∀(i, j) ∈ [[1, N ]]2, (1− ε)∥vi − vj∥ ⩽ ∥f(vi)− f(vj)∥ ⩽ (1 + ε)∥vi − vj∥

La question peut se reformuler ainsi :
Objectif

Pour quelles valeurs de k existe-t-il f : Rd → Rk qui soit une ε-isométrie pour v1, . . . , vN ?

On se propose d’établir le théorème suivant, démontré par William B.Johnson et Joram Lin-
denstrauss en 1984 :

Il existe une constante absolue c strictement positive telle que :

quels que soient N et d entiers naturels supérieurs ou égaux à 2 et quels que soient
v1, . . . , vN distincts dans Rd, il suffit que

k ⩾ c
ln(N)

ε2

pour qu’il existe une ε-isométrie f : Rd → Rk pour v1, . . . , vN .

Les seules méthodes connues à ce jour pour démontrer ce résultat sont de nature probabiliste.
Dans la partie I, on établit des résultats préliminaires portant sur la convexité et les probabilités.
La partie II est consacrée à la démonstration d’une inégalité de concentration, qui est utilisée
dans la partie III où le théorème de Johnson-Lindenstrauss est démontré.
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I. Préliminaires

I.A - Projection sur un convexe fermé

Soit E un espace euclidien.

Q 1. Soient a et b dans E. Montrer la relation suivante et en donner une interprétation géométrique :

∥a+ b∥2 + ∥a− b∥2 = 2(∥a∥2 + ∥b∥2)

Q 2. En déduire que si u, v et v′ dans E vérifient v ̸= v′ et ∥u− v∥ = ∥u− v′∥ alors∥∥∥∥u− v + v′

2

∥∥∥∥ < ∥u− v∥

Q 3 (admise) Soient F un fermé non vide de E et u dans E. On admet qu’il existe v dans F tel que

∀w ∈ F, ∥u− v∥ ⩽ ∥u− w∥

Q 4. En déduire que si C est un convexe fermé non vide de E et u est un vecteur de E alors il
existe un unique v dans C tel que

∀w ∈ C, ∥u− v∥ ⩽ ∥u− w∥

On dira que v est le projeté de u sur C et on notera d(u,C) = ∥u− v∥.

I.B - Inégalité de Hölder pour l’espérance

Soient p et q deux réels strictement positifs tels que 1
p + 1

q = 1.

Q 5. Montrer que, pour tous réels positifs a et b,

ab ⩽
ap

p
+

bq

q

On pourra utiliser la concavité du logarithme.

Q 6. En déduire que si X et Y sont deux variables aléatoires réelles sur l’espace probabilisé fini
(Ω,A,P) alors

E(|XY |) ⩽ E (|X|p)1/pE (|Y |q)1/q

On pourra d’abord montrer ce résultat lorsque E(|X|p) = E(|Y |q) = 1.

I.C - Espérance conditionnelle

Soit X : Ω → R une variable aléatoire à valeurs réelles.
Pour tout événement A ⊂ Ω de probabilité non nulle, l’espérance conditionnelle de X sachant
A, notée E(X|A), est par définition le réel

E(X|A) =
∑

x∈X(Ω)

PA(X = x) · x

En d’autres termes, E(X|A) est l’espérance de X dans l’espace (Ω,A,PA).
Les propriétés usuelles de linéarité et positivité de l’espérance, qu’on ne demande pas de redémontrer,
sont ainsi valables pour l’espérance conditionnelle sachant A.

Q 7. Soit (A1, . . . , Am) un système complet d’événements de probabilités non nulles. Montrer
que

E(X) =
m∑
i=1

P(Ai) ·E(X|Ai)
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I.D - Variables aléatoires à queue sous-gaussienne

Soit X : Ω → R une variable aléatoire réelle.
On suppose qu’il existe deux réels strictement positifs a et b tels que pour tout réel positif t,

P(|X| ⩾ t) ⩽ a exp(−bt2)

Q 8. Montrer que

E(X2) = 2

+∞∫
0

tP(|X| ⩾ t) dt

On pourra noter X2(Ω) = {y1, . . . , yn} avec 0 ⩽ y1 < y2 < · · · < yn.

Q 9. Montrer que le moment d’ordre deux de X est inférieur ou égal à
a

b
.

Soit δ un réel tel que 0 ⩽ |δ| ⩽
√

a

b
.

Q 10. Justifier que, pour tout réel t,

P(|X + δ| ⩾ t) ⩽ P(|X| ⩾ t− |δ|)

Q 11. Montrer que, pour tout réel t,

−b(t− |δ|)2 ⩽ a− t2b

2

Q 12. En déduire que pour tout réel t tel que t ⩾ |δ| on a

P(|X + δ| ⩾ t) ⩽ a exp(a) exp

(
−1

2
bt2
)

Q 13. Justifier que l’inégalité précédente reste valable si 0 ⩽ t < |δ|.

II. L’inégalité de concentration de Talagrand

Soit E un espace euclidien de dimension n ⩾ 1 muni d’une base orthonormée (e1, . . . , en).
Soient ε1, . . . , εn : Ω → {−1, 1} des variables de Rademacher indépendantes.

On pose X =
n∑

i=1
εiei.

L’objectif de cette partie est de montrer, pour tout convexe fermé non vide C de E,

P(X ∈ C) ·E
(
exp

(
1

8
d(X,C)2

))
⩽ 1 (II.1)

II.A - Étude de deux cas particuliers

Q 14. Traiter le cas où C est un convexe fermé ne rencontrant pas X(Ω).

On suppose dans la suite de cette sous-partie II.A uniquement, que C est un convexe fermé de
E qui rencontre X(Ω) en un seul vecteur u.

Q 15. Montrer que
1

4
d(X,u)2 suit une loi binomiale de paramètres n et 1/2.

Q 16. En déduire l’espérance de exp

(
1

8
d(X,u)2

)
et montrer qu’elle est inférieure ou égale à 2n.

Q 17. Justifier que d(X,C) ⩽ d(X,u) et en déduire l’inégalité (II.1) dans ce cas.

II.B - Initialisation

On suppose désormais que C est un convexe fermé de E tel que C ∩ X(Ω) contient au moins
deux éléments. Quitte à permuter les vecteurs de la base, on peut supposer que ces deux vecteurs
diffèrent par leur dernière coordonnée.

On se propose de démontrer l’inégalité (II.1) par récurrence sur la dimension n de E.

Q 18. Traiter le cas n = 1.
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II.C - Propriétés

Soit n un entier tel que n ⩾ 2. On suppose à présent que (II.1) est vérifiée au rang n− 1.
On note E′ = Vect(e1, . . . , en−1) et π la projection orthogonale sur E′

π :

n∑
i=1

xiei 7→
n−1∑
i=1

xiei

On pose X ′ = π ◦X =
n−1∑
i=1

εiei. C’est une variable aléatoire à valeurs dans E′.

Pour t ∈ {−1, 1} on note

— Ht l’hyperplan affine E′ + ten ;

— Ct = π(C ∩Ht).

Q 19. Montrer, pour x′ ∈ E′ et t ∈ {1,−1}, que x′ ∈ Ct ⇐⇒ x′ + ten ∈ C

Q 20. Montrer que C+1 et C−1 sont des convexes fermés non vides de E′.

Pour t ∈ {−1, 1}, on note Yt le projeté de X
′ sur le convexe fermé non vide Ct. C’est une variable

aléatoire à valeurs dans E′.

Q 21. Montrer que

P(X ∈ C) =
1

2
P(X ′ ∈ C+1) +

1

2
P(X ′ ∈ C−1)

II.D - Une inégalité cruciale

Soit λ un réel tel que 0 ⩽ λ ⩽ 1.

Q 22. Montrer que
d(X,C) ⩽ ∥(1− λ)(Yεn + εnen) + λ(Y−εn − εnen)−X∥

Q 23. En déduire que

d(X,C)2 ⩽ 4λ2 + ∥(1− λ)(Yεn −X ′) + λ(Y−εn −X ′)∥2

puis que
d(X,C)2 ⩽ 4λ2 + (1− λ)∥Yεn −X ′∥2 + λ∥Y−εn −X ′∥2

Ainsi, on a montré l’inégalité

d(X,C)2 ⩽ 4λ2 + (1− λ)d(X ′, Cεn)
2 + λd(X ′, C−εn)

2

II.E - Espérances conditionnelles

On note
p+ = P(X ′ ∈ C+1) et p− = P(X ′ ∈ C−1)

On va supposer, sans perte de généralité, que p+ ⩾ p−.

Q 24. Montrer que p− > 0.

Q 25. Montrer que pour tout λ dans [0, 1]

E

(
exp

(
d(X,C)2

8

) ∣∣∣ εn = −1

)
⩽ exp

(
λ2

2

)
E

((
exp

(
d(X ′, C−1)

2

8

))1−λ

·
(
exp

(
d(X ′, C1)

2

8

))λ
)

Q 26. En déduire que

E

(
exp

(
d(X,C)2

8

) ∣∣∣ εn = −1

)
⩽ exp

(
λ2

2

)(
E

(
exp

(
d(X ′, C−1)

2

8

)))1−λ

·
(
E

(
exp

(
d(X ′, C1)

2

8

)))λ

Q 27. À l’aide de l’hypothèse de récurrence, justifier que

E

(
exp

(
1

8
d(X,C)2

) ∣∣∣ εn = 1

)
⩽

1

p+

Q 28. Déduire de ce qui précède que pour tout λ dans [0, 1],

E

(
exp

(
1

8
d(X,C)2

))
⩽

1

2

(
1

p+
+ exp

(
λ2

2

)
1

p1−λ
−

· 1

pλ+

)
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II.F - Optimisation

Q 29. On pose λ = 1− p−
p+

. Montrer que

E

(
exp

(
1

8
d(X,C)2

))
⩽

1

2p+

(
1 + exp

(
λ2

2

)
(1− λ)λ−1

)
Q 30. Montrer que pour tout x ∈ [0, 1[,

x2

2
+ (x− 1) ln(1− x) ⩽ ln(2 + x)− ln(2− x)

On pourra faire une étude de fonction.

Q 31. En déduire que pour tout x ∈ [0, 1[

1 + exp

(
x2

2

)
(1− x)x−1 ⩽

4

2− x

Q 32. Terminer la démonstration de l’inégalité (II.1).

II.G - Inégalité de Talagrand

Q 33. En déduire l’inégalité de Talagrand :

Pour tout C convexe fermé non vide de E et pour tout réel t strictement positif

P(X ∈ C) ·P(d(X,C) ⩾ t) ⩽ exp

(
− t2

8

)

III. Démonstration du théorème de Johnson-Lindenstrauss

Dans cette partie on considère l’espace E = Mk,d(R) muni du produit scalaire défini par

∀(A,B) ∈ E2, ⟨A|B⟩ = tr(A⊤ ·B)

On notera ∥.∥F la norme euclidienne associée.
On rappelle queRd etRk sont munis des normes euclidiennes canoniques, notées indistinctement
∥.∥.
On identifie Rd à Md,1(R) de sorte qu’un vecteur quelconque x = (x1, . . . , xd) peut être identifié

à la matrice colonne
(
x1 . . . xd

)⊤
.

On fixe un vecteur (u1, . . . , ud) dans R
d, identifié comme ci-dessus à la colonne

(
u1 . . . ud

)⊤
de Md,1(R), et tel que ∥u∥ = 1. On définit l’application

g : M ∈ Mk,d(R) 7→ ∥M · u∥ ∈ R

Soit X = (εi,j)1⩽i⩽k,1⩽j⩽d une variable aléatoire à valeurs dans Mk,d(R) ; dont les coefficients
εi,j sont des variables aléatoires de Rademacher indépendantes.

III.A - Une inégalité de concentration

Soit r un réel.

Q 34. Montrer que C = {M ∈ Mk,d(R) | g(M) ⩽ r} est une partie convexe et fermée de
Mk,d(R).

Q 35. Montrer que pour toute matrice M dans Mk,d(R) : ∥M · u∥ ⩽ ∥M∥F .
Soit t > 0.

Q 36. Montrer que pour toute matrice M dans Mk,d(R),

d(M,C) < t ⇒ g(M) < r + t

Q 37. En déduire que

P(g(X) ⩽ r) ·P(g(X) ⩾ r + t) ⩽ exp

(
− t2

8

)
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III.B - Médianes

On dit qu’un réel m est une médiane de g(X) lorsque

P(g(X) ⩾ m) ⩾
1

2
et P(g(X) ⩽ m) ⩾

1

2

Q 38. Justifier que g(X) admet au moins une médiane.

Q 39. Déduire de ce qui précède que, pour tout réel strictement positif t

P(|g(X)−m| ⩾ t) ⩽ 4 exp

(
− t2

8

)
où m est une médiane de g(X).

Q 40. En déduire que E((g(X)−m)2) ⩽ 32.

Q 41. Montrer que E(g(X)2) = k et en déduire que E(g(X)) ⩽
√
k.

Q 42. En déduire que (
√
k −m)2 ⩽ E((g(X)−m)2).

III.C - Un lemme-clé

Q 43. Montrer que, pour tout réel strictement positif t

P(|g(X)−
√
k| ⩾ t) ⩽ 4 exp(4) exp

(
− 1

16
t2
)

On pose Ak = X√
k
. Soient ε dans ]0, 1[ et δ dans ]0, 1/2[. On suppose que k ⩾ 160 ln(1/δ)

ε2
.

Q 44. Montrer que, pour tout vecteur unitaire u dans Rd :

P
( ∣∣ ∥Ak · u∥ − 1

∣∣ > ε
)
< δ

III.D - Conclusion

On conserve les notations et les hypothèses précédentes.
Soient v1, . . . , vN des vecteurs distincts dans Rd.
Pour tout (i, j) ∈ [[1, N ]]2 tel que i < j, on note Ei,j l’événement

(1− ε)∥vi − vj∥ ⩽ ∥Ak · vi −Ak · vj∥ ⩽ (1 + ε)∥vi − vj∥

Q 45. Montrer que P(Ei,j) < δ, où Ei,j désigne l’événement contraire de Ei,j .

Q 46. En déduire que P

 ⋂
1⩽i<j⩽N

Ei,j

 ⩾ 1− N(N − 1)

2
δ.

Q 47. En déduire le théorème de Johnson et Lindenstrauss.
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