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Partie I - K = C

Soit A ∈ Mn(C).
1) C[A] est une sous-algèbre de l’algèbre Mn(C). C’est donc également un sous-espace vectoriel de

l’espace vectoriel Mn(C). Comme Mn(C) est un espace vectoriel de dimension finie (n2), C[A] est
également de dimension finie (plus précisément, sa dimension est égal au degré du polynôme minimal

de A). Donc C[A] est fermé .

Soit B ∈ C[A]. Il existe donc P ∈ C[X] tel que B = P (A).

exp(B) = lim
n→∞

Sn

avec

∀n ∈ N Sn =

n∑
k=0

1

k!
Bk =

(
n∑

k=0

1

k!
P k

)
(A) ∈ C[A]

Par caractérisation séquentielle des fermés, exp(B) ∈ C[A].

Donc C[A] est stable par exp .

2) Soit P ∈ C[X].

• Supposons que P est premier avec πA où πA désigne le polynôme minimal de A. Par le théorème
de Bézout, il existe U, V ∈ C[X] tels que

1 = UP + V πA

On a donc :

In = 1(A) = U(A)P (A) + V (A)πA(A) = U(A)P (A) + 0n = P (A)U(A)

Donc P (A) est inversible d’inverse U(A).

• Prouvons la réciproque par contraposée. Supposons que P n’est pas premier avec πA. Soit ∆ le
pgcd de P et πA et soient Q = P

∆ et S = πA
∆ .

∆(A) n’est pas inversible car sinon, notant 0n la matrice nulle de Mn(C), comme 0n = ∆(A)S(A),
on aurait S(A) = 0 avec −∞ < deg(S) < deg(πA), ce qui est contradictoire.

Comme P (A) = Q(A)∆(A) et que ∆(A) n’est pas injective, P (A) ne l’est pas non plus donc n’est
pas inversible.

3) Soit B ∈ GLn(C) ∩ C[A].

Comme B ∈ C[A], il existe un polynôme P tel que B = P (A). D’après la question précédente, P est
premier avec πA.

Dans les notations précédentes, B−1 = U(A) ∈ C[A] .

On pose G = GLn(C) ∩ C[A].

4) a) G est non vide car il contient In = 1(A).

Soient B,C ∈ G. Alors B−1C est inversible, et c’est le produit de deux polynômes en A (car
B−1 est un polynôme en A par la question précédente. Donc B−1C est un polynôme en A. Donc
B−1C ∈ G.

Donc G est un sous-groupe de (GLn(C),×) .

b) H est non vide car il contient In = exp(0n).

H est inclus dans G car pour toute matrice C ∈ H, il existe B ∈ C[A] telle que C = exp(B) donc
C est inversible d’inverse exp(−B), et comme −B ∈ C[A], on a C−1 ∈ H.
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Soit C ′ ∈ H et B′ ∈ C[A] telle que C ′ = exp(B′).

Dans les notations précédentes,

C−1C ′ = exp(−B) exp(B′) = exp(−B +B′)

car −B et B′ commutent car ce sont deux polynômes en A.

De plus, −B +B′ est un polynôme en A.

Donc C−1C ′ ∈ H.

Donc H est un sous-groupe de (G,×) .

On admet que H est un ouvert relatif de G.

5) Soit B ∈ ∁GH. Alors B = BIn ∈ BH ⊂
⋃

M∈G\H
MH.

Réciproquement, soit B ∈
⋃

M∈G\H
MH. Il existe alors M ∈ G \H telle que B ∈ MH. Il existe donc

C ∈ H tellet que B = MC.

Comme BC−1 = M ̸∈ H, comme C ∈ H et comme H est un sous-groupe de G, B ne peut appartenir
à H. De plus B appartient à G car G est stable par multiplication.

Donc B ∈ ∁GH

Ainsi ∁GH =
⋃

M∈G\H
MH .

Soit M ∈ G \H.
MH = f−1(H)

où f : G → G, C 7→ M−1C.

f est continue par continuité du produit matriciel, et H est un ouvert relatif de G, donc f−1(H) est
un ouvert relatif de G.

Ainsi
⋃

M∈G\H
MH est réunion d’ouverts relatifs de G, donc est un ouvert relatif de G.

Donc H est un fermé relatif de G .

6) a) Soient M et N dans G. Soit P le polynôme det
(
(1 − X)M + XN

)
∈ C[X]. Comme P̃ (0) =

det(M) ̸= 0, P n’est pas le polynôme nul et a donc un nombre fini de racines.

Donc l’ensemble {z ∈ C , (1− z)M + zN non inversible} est fini .

b) Soient M et N dans G. Soient z1, . . . , zp les racines du polynôme P défini dans la question
précédente. Remarquons que ni 0, ni 1 ne sont racines de P car det(M) et det(N) sont non nuls.

Soit γ : [0, 1] → C une application continue ne prenant aucune des valeurs z1, . . . , zp. Un tel
chemin peut par exemple être construit à l’aide de deux segments de droite :

-parmi les droites passant par 0, on peut en choisir une ne passant par aucun des points z1, . . . , zp
(il suffit pour cela que l’angle orienté que fait cette droite avec l’axe réel ait une mesure θ qui ne
soit congrue modulo π à aucun des arguments de z1, . . . , zp)

-puis parmi les droites passant par 1, on peut en choisir une non parallèle à la précédente et ne
passant par aucun des points z1, . . . , zp (il suffit pour cela que l’angle orienté que fait cette droite
avec l’axe réel ait une mesure qui ne soit congrue modulo π ni à θ ni à aucun des arguments de
z1 − 1, . . . , zp − 1)

-les deux droites ainsi construites se coupent en un point z et il suffit de définir γ par γ(t) = 2tz
si t ∈ [0, 12 ] et γ(t) = z + 2(t− 1

2)(1− z) si t ∈ [12 , 1].

L’application t ∈ [0, 1] 7→ (1 − γ(t))M + γ(t)N est alors un chemin continu à valeurs dans G de
M vers N (elle ne prend que des valeurs inversibles et à termes dans C[A] car C[A] est stable par
combinaisons linéaires)

Donc G est connexe par arcs .
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7) a) Soit M ∈ H et N ∈ G. Soit γ : [0, 1] → G un chemin continu de M à N et soit t0 = supX où
X = {a ∈ [0, 1], γ([0, a]) ⊂ H}
Soit ||.|| une norme sur Mn(C). Comme H est un ouvert relatif de G et comme M ∈ H, il existe
ε > 0 tel que ∀M ′ ∈ G, ||M ′ −M || ⩽ ε ⇒ M ′ ∈ H

Comme γ est continue et γ(0) = M , il existe δ > 0 tel que ∀t ∈ [0, δ] ||γ(t)−M || ⩽ ε.

Ainsi ∀t ∈ [0, δ] γ(t) ∈ H.

Donc t0 ⩾ δ > 0.

Soit t ∈ [0, t0[. t n’est pas un majorant de X car t0 est le plus petit majorant de X. Donc il existe
a ∈ X tel que a > t. Comme t ∈ [0, a], on a donc γ(t) ∈ H.

Comme H est un fermé relatif de G et comme γ est continue, on a

γ(t0) = lim
t→t−0

γ(t) ∈ H

Raisonnons par l’absurde et supposons que t0 ̸= 1. Par le même raisonnement que précédemment,
il existe δ ∈]0, 1− t0[ tel que ∀t ∈ [t0, t0 + δ] γ(t) ∈ H.

On a alors t0 + δ ∈ X, ce qui est contradictoire (car t0 majore X).

Ainsi t0 = 1, et comme γ(t0) ∈ H, on a donc N ∈ H .

b) Fixons M ∈ H (M existe car H est non vide, il contient In). Pour tout N ∈ G, il existe bien
un chemin continu de M à N à valeurs dans G car G est connexe par arcs, donc N ∈ H par la
question précédente.

Ainsi G ⊂ H donc H = G.

On a ainsi prouvé que ∀A ∈ Mn(C) exp(C[A]) = C[A] ∩GLn(C).
En particulier si A est une matrice inversible , alors A = 1(A) ∈ C[A] ∩GLn(C) donc
A a un antécédent dans C[A] par exp .

Partie II - K = R

Soit A ∈ GLn(R).

8) On suppose qu’il existe M ∈ Mn(R) tel que A = exp(M).

PosonsB = exp(M/2). AlorsB ∈ GLn(R) et commeM/2 commute avec elle-même,B2 = exp(2M/2) =

A. Donc A a une racine carrée dans GLn(R) .

9) Réciproquement, on suppose qu’il existe B ∈ GLn(R) tel que A = B2.

Par la première partie, il existe un polynôme P ∈ C[X] tel que exp(P (B)) = B

Comme B est à coefficients réels, P̄ (B) = P (B).

Ainsi exp(P̄ (B)) =
∑∞

k=0
(P̄ (B))k

k! =
∑∞

k=0
(P (B))k

k! = exp(P (B) = B̄ = B

Donc
A = BB = exp(P (B)) exp(P̄ (B)) = exp(P (B) + P̄ (B))

car P (B) et P̄ (B) commutent puisque ce sont deux polynômes en B.

Posant Q = P + P̄ , Q est à coefficients réels et A = exp(Q(B)).

Donc
A ∈ exp(R[B]) ⊂ exp(Mn(R))
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