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CHAPITRE 9

Espaces vectoriels normés I

1 Applications du cours

A Manipulations sur les normes

◻ Exercice 1 Soit ∥ ∥ une norme sur un espace vectoriel normé 𝐸, soient (𝑎,𝑏) ∈ 𝐸 × 𝐸, soient
𝑟, 𝑠 > 0. Déterminer une condition nécessaire et suffisante sur 𝑎,𝑏, 𝑠, 𝑟 pour que 𝐵 𝑓 (𝑎, 𝑟) ⊂ 𝐵 𝑓 (𝑏, 𝑠).

◻ Exercice 2 Soit (𝐸, ∥ ∥) un espace vectoriel normé et 𝑇 ∶ 𝐸 → 𝐸 définie par

𝑇 ∶ 𝑢 ↦
⎧⎪⎪⎨⎪⎪⎩

𝑢 si ∥𝑢∥ ⩽ 1
𝑢
∥𝑢∥ si ∥𝑢∥ ⩾ 1

Montrer que : ∀ (𝑢, 𝑣) ∈ 𝐸 , ∥𝑇 (𝑢) −𝑇 (𝑣)∥ ⩽ 2∥𝑢 − 𝑣∥.

B Comparaisons de normes

◻ Exercice 3 Montrer que ∥.∥∞ et ∥.∥1 ne sont pas équivalentes sur C 0([0, 1],R).

◻ Exercice 4 Soit 𝐸 = {𝑓 ∈ C 1([0, 1],R) ; 𝑓 (0) = 0}.
Montrer que 𝑓 ↦ ∥𝑓 ′∥∞ et 𝑓 ↦ ∥𝑓 ∥∞ + ∥𝑓 ′∥∞ sont deux normes sur 𝐸 et qu’elles sont équivalentes.

◻ Exercice 5 Soit 𝐸 le R-espace vectoriel des applications continues de [0, 1] dans R. On définit
sur 𝐸 une norme 𝑁 en posant :

∀ 𝑓 ∈ 𝐸 , 𝑁 (𝑓 ) = ∫
1

0
𝑒𝑡 ∣𝑓 (𝑡)∣ d𝑡

1) Vérifier que 𝑁 est bien une norme et la comparer à la norme infinie.
2) Trouver une suite de 𝐸 convergente pour 𝑁 et pas pour la norme infinie. Qu’en déduit-on?
3) Comparer 𝑁 à la norme ∥ ∥1.
◻ Exercice 6 Soit 𝐸 = C 1([0, 1],R) et 𝑁1 et 𝑁2 les applications définies sur 𝐸 par :

∀ 𝑓 ∈ 𝐸, 𝑁1(𝑓 ) = ∫
1

0
∣𝑓 (𝑡)∣ d𝑡 et 𝑁2(𝑓 ) = ∣𝑓 (0)∣ +∫

1

0
∣𝑓 ′(𝑡)∣ d𝑡

Montrer que ce sont des normes sur 𝐸, les comparer ; sont-elles équivalentes?
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◻ Exercice 7 Soit 𝐸 = {𝑓 ∈ C 1([0, 1],R) ; 𝑓 (0) = 0} et 𝑁∞ et 𝑁 ′∞ les applications définies sur 𝐸
par :

∀ 𝑓 ∈ 𝐸, 𝑁∞(𝑓 ) = sup
𝑡∈[0,1]

∣𝑓 (𝑡)∣ et 𝑁 ′∞(𝑓 ) = sup
𝑡∈[0,1]

∣𝑓 ′(𝑡)∣

Montrer que ce sont des normes sur 𝐸, les comparer. Sont-elles équivalentes?

◻ Exercice 8 Soit 𝐸 = ℓ1(K) = {(𝑢𝑛) ∈ KN ; ∑𝑢𝑛 est absolument convergente}.

Si 𝑢 = (𝑢𝑛) ∈ 𝐸, on pose ∥𝑢∥∞ = sup
𝑛∈N
∣𝑢𝑛 ∣ et ∥𝑢∥1 =

∞
∑
𝑛=0
∣𝑢𝑛 ∣.

Montrer que ce sont deux normes sur 𝐸, et les comparer.

◻ Exercice 9 Soit 𝐸 = C 0([0, 1],R). On définit ∥ ∥ sur 𝐸 par : ∀ 𝑓 ∈ 𝐸 ∥𝑓 ∥ = ∫
1

0

∣𝑓 (𝑡)∣√
𝑡

d𝑡 .

1) Montrer que ∥ ∥ est une norme sur 𝐸
2) Comparer ∥ ∥ et ∥ ∥1 ; sont-elles équivalentes?

◻ Exercice 10 Sur C[𝑋 ], pour 𝑃(𝑋) =
𝑛

∑
𝑘=0

𝑎𝑘𝑋𝑘 , on pose

∥𝑃∥1 =
𝑛

∑
𝑘=0
∣𝑎𝑘 ∣ , ∥𝑃∥2 =

¿
ÁÁÀ

𝑛

∑
𝑘=0
∣𝑎𝑘 ∣2 et ∥𝑃∥∞ = max

0⩽𝑘⩽𝑛
∣𝑎𝑘 ∣

1) Prouver que ces trois applications définissent des normes sur C[𝑋 ],
2) Montrer qu’elles vérifient ∥.∥∞ ⩽ ∥.∥2 ⩽ ∥.∥1
3) Sont-elles équivalentes?

◻ Exercice 11 Soit 𝐸 le R-espace vectoriel R[𝑋 ]. Ppour 𝑃 ∈ 𝐸, on pose :

𝑁1(𝑃) = sup
𝑥∈[−1,1]

∣𝑃(𝑥)∣ , 𝑁2(𝑃) = ∫
𝜋

0
∣𝑃(cos(𝑡))∣ d𝑡

Vérifier que 𝑁1 et 𝑁2 sont des normes sur 𝐸. Sont-elles équivalentes?

◻ Exercice 12 Soit 𝐸 l’espace vectoriel des suites complexes 𝑢 = (𝑢𝑛)𝑛∈N bornées et telles que
𝑢0 = 0. On définit 𝑁∞ et 𝑁 par : ∀𝑢 ∈ 𝐸 , 𝑁∞(𝑢) = sup

𝑛∈N
∣𝑢𝑛 ∣ , 𝑁 (𝑢) = sup

𝑛∈N
∣𝑢𝑛+1 −𝑢𝑛 ∣.

1) Montrer que 𝑁∞ et 𝑁 sont des normes sur 𝐸.
2) Montrer qu’il existe 𝑘 ∈]0,+∞[ tel que : ∀ 𝑢 ∈ 𝐸, 𝑁 (𝑢) ⩽ 𝑘 𝑁∞(𝑢). Quel est le plus petit 𝑘

possible ?
3) Les normes 𝑁 et 𝑁∞ sont-elles équivalentes?

◻ Exercice 13 Soit 𝐸 est le R-espace vectoriel des applications bornées de [0, 1] dans R, muni de
∥ ∥∞. Soit 𝐴 est la partie de 𝐸 constituée des applications continues sur [0, 1]. On pose 𝑓0 ∶ [0, 1]→ R
la fonction définie par

𝑓 ∶ 𝑥 ↦ { 1 si 𝑥 ∈ [0, 12]
2 si 𝑥 ∈ ]12 , 1]

Calculer 𝑑(𝑓0,𝐴).

◻ Exercice 14 Soit 𝑁 ∶ R2 → R définie par 𝑁 ∶ (𝑥,𝑦)↦ sup
𝑡∈[0,1]

∣𝑡𝑥 +𝑦∣.

1) Vérifier que 𝑁 est une norme sur R2.
2) Tracer la boule unité.
3) Trouver 𝛼, 𝛽 > 0 les meilleurs possibles tels que :

∀ (𝑥,𝑦) ∈ R2 , 𝛼
√
𝑥2 +𝑦2 ⩽ 𝑁 (𝑥,𝑦) ⩽ 𝛽

√
𝑥2 +𝑦2
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C Applications linéaires lipschitziennes

◻ Exercice 15 On munit 𝐸 =M𝑛(C) de la norme ∥ ∥ définie sur 𝐸 par :

∀𝐴 ∈ 𝐸, ∥𝐴∥ = sup
1⩽𝑖⩽𝑛

⎧⎪⎪⎨⎪⎪⎩

𝑛

∑
𝑗=1
∣𝑎𝑖 𝑗 ∣
⎫⎪⎪⎬⎪⎪⎭

Montrer que la trace est lipschitzienne et calculer sa norme subordonnée .

◻ Exercice 16 On munit R2 de la norme ∥.∥∞, R3 de la norme ∥.∥1 et on considère l’application

linéaire de R3 dans R2 de matrice ( 1 2 3
4 2 4

) dans les bases canoniques respectives.

Vérifier qu’elle est lipschitzienne et calculer sa norme subordonnée .

◻ Exercice 17 On munit C𝑛 de la norme 𝑁∞. Soit 𝐴 ∈M𝑛(C), soit 𝑎 l’endomorphisme de C𝑛 qui
lui est canoniquement associé.

Déterminer la norme subordonnée pour 𝑎. Même question en munissant C𝑛 de la norme 𝑁1.

◻ Exercice 18 Soit C l’espace des suites réelles convergentes muni de la norme

∥𝑢∥ = sup{∣𝑢𝑛 ∣, 𝑛 ∈ N}

Soit 𝐿 ∶ C → R la fonction qui associe à toute suite sa limite.
Montrer que 𝐿 est lipschitzienne et calculer sa norme subordonnée .

◻ Exercice 19 Dans 𝐸 = C 0([0, 1],R), on considère les normes ∥ ∥∞ et ∥ ∥1.
On note 𝐸∞ = (𝐸, ∥ ∥∞) et 𝐸1 = (𝐸, ∥ ∥1). Soit 𝜑 l’endomorphisme de 𝐸 défini par :

∀ 𝑓 ∈ 𝐸, ∀ 𝑥 ∈ [0, 1], 𝜑(𝑓 )(𝑥) = ∫
𝑥

0
𝑡 𝑓 (𝑡) d𝑡

Vérifier que les applications linéaires suivantes sont lipschitziennes et calculer leur norme subordon-
née.

𝜑1 ∶ 𝐸∞ Ð→ 𝐸∞

𝑓 z→ 𝜑(𝑓 )
,
𝜑2 ∶ 𝐸∞ Ð→ 𝐸1

𝑓 z→ 𝜑(𝑓 )

𝜑3 ∶ 𝐸1 Ð→ 𝐸∞

𝑓 z→ 𝜑(𝑓 )
,
𝜑4 ∶ 𝐸1 Ð→ 𝐸1

𝑓 z→ 𝜑(𝑓 )

◻ Exercice 20 Soit 𝐸 = C ([0, 1],R), muni de la norme ∥ ∥∞ . On considère 𝜑 ∶ 𝐸 → R définie par

𝜑 ∶ 𝑓 ↦ ∫
1
2

0
𝑓 (𝑥)d𝑥 −∫

1

1
2

𝑓 (𝑥)d𝑥

Est-elle lipschitzienne sur 𝐸 ?
Si oui, calculer sa norme subordonnée .

◻ Exercice 21 Soit 𝐸 = R[𝑋 ] et 𝑎 un réel donné. Pour 𝑃 dans 𝐸, on pose : ∥𝑃∥ = sup
𝑥∈[0,1]

∣𝑃(𝑥)∣.

1) Montrer que ∥ ∥ est une norme sur 𝐸.
2) L’application 𝜑 ∶ 𝐸 → R définie par 𝜑 ∶ 𝑃 ↦ 𝑃(𝑎) est-elle lipschitzienne sur 𝐸 ?
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◻ Exercice 22 On pose 𝐸 = C ([0, 1],R) muni de la norme infini.
Pour 𝑓 ∈ 𝐸, on pose 𝑇 (𝑓 ) l’application définie sur [0, 1] par

𝑇 (𝑓 ) ∶ 𝑥 ↦ ∫
1

0
inf(𝑥,𝑦) 𝑓 (𝑦) d𝑦

1) Montrer que 𝑇 ∶ 𝑓 ↦𝑇 (𝑓 ) est un endomorphisme de 𝐸.
2) L’endomorphisme 𝑇 est-il lipschitzien?
3) L’endomorphisme 𝑇 est-il injectif ? est-il un automorphisme de 𝐸 ?
4) Déterminer les éléments propres de𝑇 .

D Suites de matrices

◻ Exercice 23 Déterminer lim
𝑛→+∞

𝐴𝑛 où 𝐴 =
⎛
⎜⎜
⎝

0 0 1
2

1 0 1
2

0 1 0

⎞
⎟⎟
⎠
.

◻ Exercice 24 Déterminer si elle existe lim
𝑛→+∞

(𝐴
4
)
𝑛

où 𝐴 =
⎛
⎜
⎝

8 −1 −5
−2 3 1

4 −1 −1

⎞
⎟
⎠
puis lim

𝑛→+∞
( 𝐴

𝑛

𝑛4𝑛
)

◻ Exercice 25 Soit (𝐴𝑛) une suite de matrices de M𝑝(R) vérifiant les propriétés suivantes :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ∶ lim
𝑛→+∞

𝐴𝑛 = 𝐴 ∈M𝑝(R)
2 ∶ pour tout 𝑛, 𝐴𝑛 est inversible
3 ∶ lim

𝑛→+∞
𝐴−1𝑛 = 𝐵 ∈M𝑝(R).

1) Montrer que 𝐴 est inversible et 𝐴−1 = 𝐵.
2) Peut-on retirer la propriété 3?

◻ Exercice 26 Soit 𝐴 ∈M2(C). Pour 𝑋 ∈M2,1(C) on pose 𝐺𝑋 = {𝐴𝑛𝑋 /𝑛 ∈ N}.

On suppose que pour tout 𝑋 ∈M2,1(C), l’ensemble𝐺𝑋 est borné. Montrer que ∣tr(𝐴)∣ ⩽ 2.

◻ Exercice 27

On donne 𝐴 =
⎛
⎜
⎝

1 0 0
−2 3 1
4 −4 −1

⎞
⎟
⎠
et 𝐵 =

⎛
⎜
⎝

1 0 0
0 1 1
0 0 1

⎞
⎟
⎠
.

1) Montrer que 𝐴 et 𝐵 sont semblables.
2) Calculer lim

𝑛→+∞
𝐴𝑛

𝑛 .

◻ Exercice 28
1) Soit (𝜆𝑛) et (𝜇𝑛) deux suites complexes. Pour tout entier 𝑛 ∈ N, on note𝑇𝑛 = (𝑋 −𝜆𝑛)(𝑋 − 𝜇𝑛) =
(𝑋 2 − 𝑠𝑛𝑋 + 𝑝𝑛). On suppose que (𝑠𝑛) et (𝑝𝑛) converge vers des limites 𝑠 et 𝑝 vérifiant 𝑠2 = 4𝑝 .
Montrer que les suites (𝜆𝑛) et (𝜇𝑛) sont bornées, et en déduire qu’elles convergent.

2) Soit𝑀0 = (
1 0
0 1
) et si 𝑡 /= 0𝑀𝑡 = (

1 + 𝑡 cos 2
𝑡 −𝑡 sin 2

𝑡
−𝑡 sin 2

𝑡 1 − 𝑡 cos 2
𝑡
).

Trouver les valeurs propres et les vecteurs propres de 𝑀𝑡 . Etudier leur comportement lorsque
𝑡 tend vers zéro.

3) Soit (𝐴𝑛) une suite de matrices de M𝑝(C) convergeant vers une matrice 𝐴.

Montrer que l’ensemble des valeurs propres des matrices 𝐴𝑛 quand 𝑛 décrit N est borné.
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2 Exercices plus élaborés

A Manipulations sur les normes

◻ Exercice 29 Soit ∥ ∥ une norme sur un espace vectoriel normé 𝐸 ; montrer que :
1) ∀ (𝑥,𝑦, 𝑧, 𝑡) ∈ 𝐸 × 𝐸 × 𝐸 × 𝐸 ,
∥𝑥 −𝑦∥ + ∥𝑧 − 𝑡∥ + ∥𝑥 − 𝑧∥ + ∥𝑦 − 𝑡∥ ⩾ ∥𝑥 − 𝑡∥ + ∥𝑦 − 𝑧∥.

2) ∀ (𝑥,𝑦, 𝑧) ∈ 𝐸 × 𝐸 × 𝐸 ,
𝑥 +𝑦 + 𝑧 = 0 ⇒ ∥𝑥 −𝑦∥ + ∥𝑦 − 𝑧∥ + ∥𝑧 − 𝑥∥ ⩾ 3

2(∥𝑥∥ + ∥𝑦∥ + ∥𝑧∥)

3) ∀ (𝑥,𝑦) ∈ (𝐸/{0})2 , ∥𝑥 −𝑦∥ ⩾ 1
2 sup(∥𝑥∥, ∥𝑦∥) ∥

𝑥

∥𝑥∥
− 𝑦

∥𝑦∥
∥.

◻ Exercice 30 Montrer que 𝑁 ∶ R2 → R définie par 𝑁 (𝑥,𝑦) = ∫
1

0
∣𝑥 + 𝑡𝑦∣ d𝑡 est une norme et

représenter sa boule unité fermée.

B Comparaisons de normes

◻ Exercice 31 Soit𝑀 ∈M𝑛(C) une matrice diagonalisable.

On suppose qu’il existe 𝜆 ∈ Sp(𝑀) tel que : ∀𝛼 ∈ Sp(𝑀)/{𝜆}, ∣𝜆∣ > ∣𝛼 ∣.

Déterminer un équivalent simple de 𝑀𝑝 quand 𝑝 tend vers +∞ (c’est-à-dire une suite de matrices
(𝐴𝑝) telle que𝑀𝑝 = 𝐴𝑝 + ∥𝐴𝑝∥𝜀𝑝 où (𝜀𝑝) est une suite de matrices convergeant vers la matrice nulle
𝑛 ×𝑛).

◻ Exercice 32 On pose 𝑁 ∶ R2 Ð→ R définie par 𝑁 (𝑥,𝑦) = sup
𝑡 ∈ R
∣𝑥 + 𝑡𝑦
1 + 𝑡2

∣.

1) Montrer que est une norme sur R2.
2) Représenter graphiquement la boule fermée de centre 0 et de rayon 1 et comparer 𝑁 à la norme

euclidienne.

◻ Exercice 33 Si 𝑃 ∈ 𝐸 = R [𝑋 ], on pose 𝑁1 (𝑃) = ∫
1

0
∣𝑃(𝑡)∣ d𝑡 et 𝑁2 (𝑃) = ∫

3

2
∣𝑃(𝑡)∣ d𝑡

1) Les applications 𝑁1 et 𝑁2 sont-elles des normes sur 𝐸 ? Si oui, sont-elles équivalentes?

2) L’application 𝜓 ∶ 𝑃 ∈ R [𝑋 ] ↦ 𝜓 (𝑃) = ∫
1

0
𝑃(𝑡) d𝑡 est-elle lipschitzienne au sens de 𝑁1 ? au

sens de 𝑁2 ?
◻ Exercice 34 On note 𝐸 = C 1 ([0, 1] ;R). On pose

𝑁 ∶ 𝑓 ∈ 𝐸 ↦ (∣𝑓 (0)∣2 +∫
1

0
∣𝑓 ′ (𝑡)∣2 d𝑡)

1
2

L’application 𝑁 est-elle une norme? Si oui, est-elle équivalente à la norme de la convergence uni-
forme?

◻ Exercice 35 Soient 𝑁1 et 𝑁2 deux normes sur R2 ; montrer que : 𝑁1 et 𝑁2 sont équivalentes si
et seulement si :

{ ∀ 𝑟 > 0 , ∃ 𝑠 > 0 , 𝐵𝑁1(0, 𝑠) ⊂ 𝐵𝑁2(0, 𝑟)
∀ 𝑟 > 0 , ∃ 𝑠 > 0 , 𝐵𝑁2(0, 𝑠) ⊂ 𝐵𝑁1(0, 𝑟)

◻ Exercice 36 Soit 𝐸 = C ([0, 1],R), et soit 𝑔 donnée dans 𝐸.

Pour tout 𝑓 dans 𝐸, on définit 𝑁 (𝑓 ) = sup
𝑥∈[0,1]

∣𝑓 (𝑥)𝑔(𝑥)∣.

1) Déterminer une CNS sur 𝑔 pour que 𝑁 soit une norme sur 𝐸.
2) On suppose que : ∀ 𝑥 ∈ [0, 1], 𝑔(𝑥) /= 0 ; montrer que 𝑁 et ∥ ∥∞ sont équivalentes.
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C Applications linéaires lipschitziennes

◻ Exercice 37 Soit 𝐸 = R3[𝑋 ]. Pour 𝑃 élément de 𝐸, on pose ∥𝑃∥ = ∣𝑃(0)∣+ ∣𝑃(1)∣+ ∣𝑃(2)∣+ ∣𝑃(3)∣.
1) Démontrer que ∥.∥ est une norme sur 𝐸.
2) Soit 𝜑 l’application de 𝐸 dans 𝐸 définie par 𝜑(𝑃)(𝑋) = 𝑃(𝑋 + 2). Vérifier que 𝜑 est linéaire

lipschitzienne et calculer sa norme subordonnée ∥𝜑∥op.
◻ Exercice 38 Soit 𝐸 un espace vectoriel normé non réduit à {0𝐸} et 𝑢, 𝑣 ∈L (𝐸) tels que 𝑢 ○ 𝑣 −
𝑣 ○𝑢 = id𝐸 .
1) Calculer 𝑢 ○ 𝑣𝑛 − 𝑣𝑛 ○𝑢 pour 𝑛 ∈ N∗.
2) Montrer que 𝑢 ou 𝑣 est discontinu.

◻ Exercice 39 On munit 𝐸𝑘 = R𝑘[𝑋 ] de la norme ∥𝑃∥𝑘 =
𝑘

∑
𝑖=0
∣𝑃(𝑖)∣.

Soit 𝜑 ∶ 𝐸2 → 𝐸1 définie par 𝜑 ∶ 𝑃 ↦ 𝑋 2𝑃 ′.
Vérifier que 𝜑 est linéaire lipschitzienne et calculer sa norme subordonnée ∥𝜑∥op.

◻ Exercice 40 On pose 𝐸 = {𝑓 ∈ C ([0, 1],R)/𝑓 (0) = 0} et on le munit de la norme ∥ ∥∞.

Pour 𝑛 ⩾ 1, on pose 𝑇𝑛 ∶ 𝐸 → R définie par

𝑇𝑛 ∶ 𝑓 ↦ ∫
1

0
𝑓 (𝑥) d𝑥 + 𝑓 (1

𝑛
)

1) Montrer que 𝑇𝑛 est lipschitzienne sur 𝐸.
2) Calculer sa norme subordonnée ∥𝑇𝑛∥op.
3) La suite (𝑇𝑛)𝑛⩾1 est-elle convergente dans L𝑐(𝐸,R)?
◻ Exercice 41 Soit 𝐶 l’espace vectoriel des suites complexes convergentes, 𝐶0 le sous-espace de
𝐶 des suites de limite nulle. Sur ces deux espaces vectoriels on considère la norme infinie :

∀(𝑥𝑛) ∈𝐶, ∥(𝑥𝑛)∥∞ = sup
𝑛∈N
∣𝑥𝑛 ∣

Pour 𝑥 = (𝑥𝑛) ∈𝐶 , on note ℓ(𝑥) = lim
𝑛→+∞

𝑥𝑛 .

On considère 𝑇 ∶𝐶 →𝐶0 défini par

𝑇 ∶ 𝑥 ↦ (ℓ(𝑥), 𝑥0 − ℓ(𝑥), 𝑥1 − ℓ(𝑥),⋯,⋯)

1) Montrer que𝑇 est bien définie, linéaire, bijective et que𝑇 et𝑇 −1 sont linéaires et lipschitziennes.
2) Calculer les normes subordonnées ∥𝑇 ∥op et ∥𝑇 −1∥op.

◻ Exercice 42 Soit 𝐸 = (C 0([0, 1],R), ∥.∥∞). On considère l’application :

𝜑 ∶ 𝐸 Ð→ R

𝑓 z→
+∞
∑
𝑛=1

(−1)𝑛
𝑛2 𝑓 ( 1𝑛)

Démontrer qu’elle est linéaire, lipschitzienne et calculer la norme subordonnée ∥𝜑∥op.

Peut-on trouver une fonction 𝑓 telle que ∣𝜑(𝑓 )∣∥𝑓 ∥∞ = ∥𝜑∥op ?
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D Suites de matrices

◻ Exercice 43 Calculer la limite quand 𝑛 tend vers +∞ de 𝐴𝑛 =
⎛
⎜
⎝

1 −𝛼𝑛
𝛼
𝑛 1

⎞
⎟
⎠

𝑛

(𝛼 est un réel).

◻ Exercice 44 Soit 𝐴 = ( 1 1
1 0

). On définit la suite de matrices (𝐴𝑛) par :

𝐴0 = 𝐴, et ∀𝑛 ∈ N∗, 𝐴𝑛 = 1
2(𝐴𝑛−1 + 3(𝐴𝑛−1)−1)

1) Diagonaliser 𝐴0.
2) Montrer que 𝐴𝑛 est définie pour tout 𝑛.
3) Montrer que la suite (𝐴𝑛) converge et déterminer sa limite.
◻ Exercice 45 Soit 𝑅𝑛 ∈ R3[𝑋 ] le reste de la division euclidienne de (𝑋 + 1)𝑛 par 𝑋 4. Déterminer

lim
𝑛→+∞

𝑅𝑛
𝑛3
.

◻ Exercice 46 Soit 𝐴 ∈ M𝑛(C). On suppose que la suite (𝐴𝑝)𝑝∈N admet une limite 𝐿 ∈ GL𝑛(C).
Déterminer 𝐴 et 𝐿.

◻ Exercice 47 Soit 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

3 −1 0 ⋯ 0
−1 3 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ 0 −1 3

⎞
⎟⎟⎟⎟⎟⎟
⎠

de M𝑝(R), 𝑝 ⩾ 2. On dira que 𝐴 est la matrice

bande [−1, 3,−1].

Le but de cet exercice est de mettre en place une méthode itérative de résolution approchée d’un
système linéaire, en utilisant un “schéma de point fixe” (on écrit un système équivalent dont la
solution est le point fixe d’une application, qu’on approche à l’aide d’une suite récurrente).

1) Démontrer que cette matrice est inversible. On note 𝑋∗ l’unique solution du système linéaire
𝐴𝑋 = 𝐵 avec 𝐵 = ( 1 ⋯ 1 )⊺ : 𝑋∗ = 𝐴−1𝐵.

Le système 𝐴𝑋 = 𝐵 est équivalent au système 𝑋 =𝐶𝑋 + 1
3𝐵 avec 𝐶 matrice bande à préciser.

Soit 𝑇 l’application de R𝑝 dans R𝑝 définie par 𝑋 z→𝐶𝑋 + 1
3𝐵. Quel est le vecteur 𝑇 (𝑋∗)?

2) Question à résoudre avec Python : on suppose ici p=5.

Construire les matrices 𝐴,𝐶 , le vecteur 𝐵, et la transformation 𝑇 .

Confirmer l’inversibilité de 𝐴. Expliciter alors 𝑋∗, puis une valeur approchée de ce vecteur.

Vérifier la valeur attendue pour 𝑇 (𝑋∗).
3) OnmunitR𝑝 de la norme ∥ ∥∞ associée à la base canonique.Montrer alors que𝑇 est𝑘−lipschitzienne

avec une constante 𝑘 ∈]0, 1[ à préciser.

Montrer qu’en partant d’un vecteur 𝑋0 arbitraire, la suite (𝑋𝑛) définie par la récurrence

𝑋𝑛+1 =𝑇𝑋𝑛 (pour tout naturel 𝑛) converge vers 𝑋∗
4) A partir d’une majoration de ∥𝑋𝑛+1−𝑋𝑛∥∞, puis de ∥𝑋𝑛+𝑝 −𝑋𝑛∥∞ à l’aide de ∥𝑋1−𝑋0∥∞, établir

la formule : ∥𝑋∗ −𝑋𝑛∥∞ ⩽ 𝑘𝑛

1−𝑘 ∥𝑋1 −𝑋0∥∞.
5) On choisit 𝑋0 = 0. Soit 𝜀 = 10−2 ; avec Python, construire les termes de la suite (𝑋𝑛) nécessaires

pour obtenir une valeur approchée de 𝑋∗ à 𝜀 près. (au sens de ∥ ∥∞).

On pourra choisi d’écrire une procédure ou non. Comparer avec la valeur approchée de 𝑋∗

lorsque 𝑝 = 5.
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CHAPITRE 10

Séries entières

1 Applications du cours

A Rayon de convergence

◻ Exercice 1 Déterminer le rayon de convergence des séries entières suivantes :

a) ∑
𝑛⩾0
(3𝑛2 + 2𝑛)𝑥𝑛 b) ∑

𝑛⩾0
(2𝑛 + 3𝑛+1)𝑥𝑛

c) ∑
𝑛⩾0

𝑛𝑛𝑥𝑛 d) ∑
𝑛⩾2

1
(ln𝑛)𝑛

𝑥𝑛

e) ∑
𝑛⩾1

arctan(𝑛𝛼)𝑥𝑛 où𝛼 ∈ R f) ∑
𝑛⩾0
(−1)𝑛

(2𝑛𝑛 )
2𝑛 − 1

𝑥𝑛

g) ∑
𝑛⩾2

ln((−1)
𝑛 +
√
𝑛√

𝑛 + 1
)𝑥𝑛 h) ∑

𝑛⩾0

𝑛𝑛

𝑛!
𝑥𝑛

i) ∑
𝑛⩾1

sh (𝑛)
ch 2(𝑛)

𝑥𝑛 j) ∑
𝑛⩾1
(cos ( 1𝑛))

𝑛𝛼
𝑥𝑛

◻ Exercice 2 Déterminer le rayon de convergence 𝑅 de la série entière ∑
𝑛⩾1

𝑎𝑛𝑥𝑛 dans les cas sui-

vants

1) pour tout 𝑛 ⩾ 1, 𝑎𝑛 =
ch (𝑛)
𝑛

si 𝑛 est pair et
sh (𝑛)
𝑛

si 𝑛 est impair

2) pour tout 𝑛 ⩾ 1, 𝑎𝑛 =
+∞
∑
𝑘=𝑛

(−1)𝑘
𝑘

3) pour tout 𝑛 ⩾ 1, 𝑎𝑛 = ∫

√
(𝑛+1)𝜋

√
𝑛𝜋

sin(𝑥2)𝑑𝑥 .

◻ Exercice 3 Déterminer le rayon de convergence de la série entière ∑𝑎𝑛𝑥𝑛 avec

𝑎𝑛 =
2𝑛
∑

𝑘=𝑛+1
1√
𝑘
, et étudier la convergence en 𝑅 et en −𝑅.

◻ Exercice 4 Montrer que les séries entières ∑𝑎𝑛𝑧𝑛 et ∑ ∣𝑎𝑛 ∣𝑧𝑛 ont même rayon de convergence.

◻ Exercice 5 On suppose que ∑𝑎𝑛𝑧𝑛 a pour rayon 𝑅 > 0. Quel est celui de ∑ 𝑎𝑛
𝑛!𝑧

𝑛 ?
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◻ Exercice 6 (Série entière qui ne converge ni normalement ni uniformément sur 𝐷(0, 𝑅)) :
1) cas 𝑅 fini, 𝑅 > 0 : étudier la convergence normale puis uniforme de ∑ (𝑥 z→ 𝑥𝑛) sur ] − 1, 1[.

2) cas 𝑅 = +∞ : étudier la convergence normale puis uniforme de ∑ (𝑥 z→ 𝑥𝑛

𝑛! ) sur R.

◻ Exercice 7 Soit 𝑎 ∈ R ∖ 𝜋Z. Convergence et somme de 𝑓 (𝑥) =
+∞
∑
𝑛=1

sin(𝑛𝑎)
(sin𝑎)𝑛

𝑥𝑛

𝑛! .

◻ Exercice 8 Déterminer les rayons de convergence des séries entières∑ (𝑑𝑛𝑥𝑛) avec :

1) 𝑑𝑛 est le nombre de diviseurs de 𝑛.
2) 𝑑𝑛 est la 𝑛ième décimale de 𝜋 .

◻ Exercice 9 On pose pour tout entier naturel 𝑘 : 𝑢𝑘 = 1
𝑘2+1 .

1) Justifier que ∑ 1
𝑘2+1 est convergente, on pose 𝑎𝑛 =

+∞
∑

𝑘=𝑛+1
1

𝑘2+1 .

2) Déterminer le rayon de convergence de ∑ (𝑎𝑛𝑥𝑛)

B Calculs de sommes

◻ Exercice 10 Déterminer le rayon de convergence puis la somme de la série entière ∑
𝑛⩾1

𝑛−3
(𝑛−1)!𝑥

𝑛 .

◻ Exercice 11 Soit 𝑓 (𝑥) =
+∞
∑
𝑛=1

(1−𝑥)𝑛
𝑛 +

+∞
∑
𝑛=1

1
𝑛 (

𝑥−1
𝑥 )

𝑛
.

1) Déterminer pour quelles valeurs de 𝑥 les deux séries ci-dessus sont convergentes.
2) Calculer 𝑓 (𝑥).
◻ Exercice 12 Déterminer le rayon de convergence𝑅 et la somme de la série entière ∑

𝑛⩾0
1

(𝑛+1)(𝑛+2)𝑥
𝑛 .

◻ Exercice 13 On pose, lorsque cela a un sens, 𝑓 (𝑥) =
+∞
∑
𝑛=1

𝑥2𝑛+2

𝑛(𝑛+1)(2𝑛+1) .

1) Quel est l’ensemble de définition 𝐷 de 𝑓 ?
2) Montrer que 𝑓 est continue sur 𝐷 .
3) Calculer 𝑓 (𝑥) sur cet ensemble.

4) Déterminer :
+∞
∑
𝑛=1

1
𝑛(𝑛+1)(2𝑛+1) .

◻ Exercice 14 Rayon de convergence et somme de la série entière : ∑
𝑛⩾0

𝑥3𝑛

(3𝑛)!

◻ Exercice 15 On considère la série entière ∑
𝑛⩾1

ch (𝑛)
𝑛 𝑥𝑛 .

Calculer son rayon de converge et sa somme 𝑆(𝑥) pour 𝑥 dans l’intervalle ouvert de convergence.

◻ Exercice 16 On considère la série entière∑
𝑛⩾0
(−1)𝑛

(2𝑛𝑛 )
2𝑛 − 1

𝑥𝑛 .

On note 𝑅 son rayon de convergence et 𝑓 sa somme définie sur ] − 𝑅,𝑅[.

1) Montrer que : ∀𝑥 ∈] − 𝑅,+𝑅[, 2𝑓 (𝑥) = (1 + 4𝑥)𝑓 ′(𝑥).
2) En déduire 𝑓 .
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◻ Exercice 17 Soit 𝑎 un réel. Déterminer le rayon de convergence de la série entière ∑
𝑛⩾1

cos(𝑛𝑎)𝑥𝑛𝑛 ,

puis calculer sa somme.

◻ Exercice 18 Soit la série entière ∑
𝑛⩾0

𝑛𝑥𝑛

(2𝑛+1)! ; déterminer son rayon de convergence et sa somme.

◻ Exercice 19 Déterminer le rayon de convergence et la somme de la série entière ∑
𝑛⩾0

𝑥𝑛

2𝑛+1 .

◻ Exercice 20 Déterminer le rayon de convergence et la somme de : ∑
𝑛⩾1

𝑛+2
𝑛(𝑛+1)𝑥

𝑛 .

◻ Exercice 21 Déterminer le rayon de convergence et la somme de : ∑
𝑛⩾1

𝑥𝑛

𝑛(𝑛+2) .

◻ Exercice 22 Calculer
+∞
∑
𝑛=0

1
(𝑛+1)(2𝑛+1) .

◻ Exercice 23 Calculer
+∞
∑
𝑛=0

1
(4𝑛+2)2𝑛 .

◻ Exercice 24 Convergence et somme de la série entière : ∑
𝑛⩾1

cos (2𝑛𝜋3 )
𝑥𝑛

𝑛 .

Calculer :
+∞
∑
𝑛=1

cos( 2𝑛𝜋3 )
𝑛 .

◻ Exercice 25 On pose, lorsque cela a un sens, 𝑓 (𝑥) =
∞
∑
𝑛=0
(−1)𝑛−1 𝑥2𝑛+14𝑛2−1 .

1) Quel est l’ensemble de définition de 𝑓 ?
2) Calculer 𝑓 (𝑥) sur cet ensemble.

3) En déduire la valeur de
+∞
∑
𝑛=0

(−1)𝑛
4𝑛2−1 .

◻ Exercice 26 Soit la série entière ∑( 𝑛!
1.3.⋯.(2𝑛+1)𝑥

2𝑛+1).

1) Déterminer son rayon de convergence.
2) Déterminer sa somme 𝑓 .

On pourra chercher une équation différentielle vérifiée par 𝑓 .

◻ Exercice 27 Convergence et somme de la série entière : ∑
𝑛⩾0
(𝑛2 + 1)2𝑛+1𝑥𝑛 .

◻ Exercice 28 Rayon de convergence et somme de la série entière :

∑
𝑛⩾0
( ch (0) + ch (1) + ch (2) ⋅ ⋅ ⋅ + ch (𝑛))𝑥𝑛 .

◻ Exercice 29 Soit la suite 𝑎𝑛 = 1
10 +

𝑛
3 − ⌊

𝑛
3⌋ (𝑛 ∈ N∗).

Rayon de convergence et somme de la série entière ∑
𝑛⩾1

𝑎𝑛𝑥𝑛 .

◻ Exercice 30 On pose 𝑓 (𝑥) =
+∞
∑
𝑛=1

(−1)𝑛𝑥𝑛+2
𝑛(𝑛+2) .

1) Déterminer l’ensemble de définition 𝐷 de 𝑓 .
2) Calculer 𝑓 (𝑥) sur 𝐷 .

◻ Exercice 31 Soit 𝜃 ∈]0, 𝜋[, et les séries entières ∑
𝑛⩾0

sin(𝑘𝜃)𝑥𝑘 et ∑
𝑛⩾0

sin(𝑘𝜃)
𝑘 𝑥𝑘

Déterminer leur rayon de convergence et leur somme.
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◻ Exercice 32 Soit (𝑎𝑛) une suite telle que pour tout entier 𝑛 ∈ N, 𝑎𝑛+1𝑎𝑛
= 2𝑛+1

2(𝑛+1) .

Calculer le rayon de convergence et la somme de la série entière ∑
𝑛⩾0

𝑎𝑛𝑥𝑛 .

◻ Exercice 33 Calculer
+∞
∑
𝑘=0

𝑘+1
𝑘+3 𝑥

𝑘 pour 𝑥 ∈] − 1, 1[.

◻ Exercice 34

Soit la série de fonctions ∑ (𝑢𝑛) où 𝑢𝑛 ∶ 𝑥 z→ 𝑥4𝑛+1

4𝑛+1 −
𝑥2𝑛+1

4𝑛+3 .

1) Déterminer son domaine de convergence 𝐷 .
2) Donner une expression simple de 𝑓 . Déterminer ℓ = lim

𝑥→1−
𝑓 (𝑥).

3) Montrer que 𝜋
4 =

+∞
∑
𝑛=0

(−1)𝑛
2𝑛+1 . En déduire 𝑓 (1).

4) Comparer ℓ et 𝑓 (1). Cela contredit-il le théorème d’Abel radial ?

C Développements en séries entières

◻ Exercice 35 Soit 𝑓 (𝑥) = ln(
√
𝑥2 − 2( ch𝛼)𝑥 + 1), 𝛼 ∈ R.

1) Déterminer l’ensemble de définition de 𝑓 .
2) Développement en série entière de 𝑓 .

◻ Exercice 36
1) Rappeler les développements en séries entières de 𝑥 z→ ln(1 + 𝑥) et 𝑥 z→ ln(1 − 𝑥).
2) Soit la série entière ∑ 𝑥2𝑛

(𝑛+1)(2𝑛+1)𝑛⩾0
; déterminer son rayon de convergence et sa somme sur

l’intervalle ouvert de convergence.
3) En déduire la somme pour 𝑥 = 1.

◻ Exercice 37 Développer en série entière en 0 : 𝑥 z→ arctan(2(𝑥+3)𝑥−2 ).

◻ Exercice 38 Donner le développement en série entière en 0 de 𝑥 z→ 𝑒𝑥 sin(𝑥).

◻ Exercice 39 Former le développement en série entière en 0 de :

1) 𝑥 z→ sin(4𝑥)
sin(𝑥)

2) 𝑥 z→ ln(𝑥2 − 5𝑥 + 6) 3) 𝑥 z→ ln ( 2−𝑥3−𝑥2 )

4) 𝑥 z→ arctan ( 𝑥 sin𝑎
1−𝑥 cos𝑎), 𝑎 ∈ R 5) 𝑥 z→ ln(1 + 𝑥 + 𝑥2), 6) 𝑥 z→ 1

𝑥2 − 2𝑥 cos(𝛼) + 1
(𝛼 ∈ R)

◻ Exercice 40 Développer en série entière en 0 la fonction 𝑓 ∶ 𝑥 z→ ln(1 + 𝑥2

1+𝑥 ).

◻ Exercice 41 Développement en série entière au voisinage de 0 de 𝑥 z→ ln(1+𝑥+𝑥21−𝑥+𝑥2).

◻ Exercice 42 Former le développement en série entière en 0 de :

𝑥 z→ arctan(𝑥 + 1) , 𝑥 z→ arctan (𝑥−1𝑥+1 tan𝛼), 𝑥 z→ arctan(
√
1+𝑥2−1
𝑥 ).

◻ Exercice 43 Développer en série entière autour de 0 de 𝑥 z→ ∫
𝑥

−∞

1
1 + 𝑡2 + 𝑡4

d𝑡 .

◻ Exercice 44 Soit 𝑓 la fonction de variable réelle 𝑥 définie par : 𝑓 (𝑥) = arctan( 𝑥
√
2

1−𝑥2).

Développer 𝑓 en série entière à l’origine et déterminer le rayon de convergence de la série entière
obtenue.
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◻ Exercice 45 Soit la fonction 𝑓 ∶ 𝑥 z→ arcsin(𝑥)√
1−𝑥2

.

1) Montrer que 𝑓 est développable en série entière
2) Chercher une équation différentielle vérifiée par 𝑓 de la forme :

𝑎(𝑥)𝑦′(𝑥) +𝑏(𝑥)𝑦(𝑥) = 𝑐(𝑥), où 𝑎,𝑏, 𝑐 sont des fonctions polynômiales.
3) Déterminer le développement en série entière de 𝑓 .
4) En déduire le développement en série entière de 𝑥 ↦ (arcsin(𝑥))2.

D Études de fonctions définies comme sommes de séries entières

◻ Exercice 46 Soit 𝑓 (𝑥) =
+∞
∑
𝑛=0

2𝑛+1
2𝑛−1𝑥

𝑛

1) Calculer le rayon de convergence 𝑅 et étudier la nature de la série aux bornes de l’intervalle de
convergence.

2) Calculer la somme de la série.
3) Equivalent de 𝑓 (𝑥) quand 𝑥 tend vers 1 par valeurs inférieures.

◻ Exercice 47 Soit 𝑎 ∈ R tel que ∣𝑎∣ < 1. Soit 𝑆 ∶ [0, 1[→ R définie par 𝑆 ∶ 𝑥 ↦
+∞
∑
𝑛=1

𝑎𝑛

1 − 𝑥𝑛
.

1) Montrer que 𝑆 est continue sur [0, 1[.
2) Trouver un équivalent de 𝑆(𝑥) quand 𝑥 tend vers 1.

◻ Exercice 48 Soit 𝑓 (𝑥) =
+∞
∑
𝑛=1

𝑛𝑝𝑥𝑛 , où 𝑝 est un entier naturel.

1) Déterminer le rayon de convergence de la série entière définissant 𝑓 .
2) Déterminer un équivalent de 𝑓 (𝑥) quand 𝑥 tend vers 1.

E Divers

◻ Exercice 49 Soit∑ (𝑎𝑛𝑧𝑛)𝑛∈N une série entière de rayon de convergence 𝑅 > 0. On suppose que
∀𝑛 ∈ N, 𝑎𝑛 ⩾ 0. Montrer l’équivalence des propriétés suivantes

i) ∑
𝑛⩾0

𝑎𝑛𝑧𝑛 converge uniformément sur 𝐷(0, 𝑅).

ii) ∑
𝑛⩾0

𝑎𝑛𝑧𝑛 converge uniformément sur le disque fermé 𝐷(0, 𝑅)

iii) ∑
𝑛⩾0

𝑎𝑛𝑧𝑛 converge uniformément sur le cercle C (0, 𝑅)

◻ Exercice 50 Montrer que : ∫
1

0
𝑒−

𝑥2

2 d𝑥 > sin(1).

◻ Exercice 51 Soit (𝑎𝑛) une suite bornée de nombres réels.Que peut-on dire des rayons de conver-

gence des séries entières ∑
𝑎𝑛
𝑛!
𝑥𝑛 et ∑𝑎𝑛𝑥𝑛 ? On note 𝑓 et 𝑔 leurs sommes respectives.

Soit 𝑥 ∈ ]0, 1[.

1) Montrer que 𝑡 ↦ 𝑒−𝑡/𝑥 𝑓 (𝑡) est intégrable sur R+

2) Etablir : ∫
+∞

0
𝑒−

𝑡
𝑥 𝑓 (𝑡) d𝑡 = 𝑥𝑔 (𝑥)
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◻ Exercice 52
1) Montrer que le prolongement par continuité de 𝑥 z→ sin𝑥

𝑥 est de classe C∞ sur R.

2) Même question pour 𝑥 z→ arctan𝑥
𝑥 , et pour 𝑥 z→ ln𝑥

𝑥−1 sur ]0,+∞[.
◻ Exercice 53 Soient deux suites de terme général 𝑎𝑛 et 𝑏𝑛 réels positifs vérifiant :

𝑎0 = 0 ,
+∞
∑
𝑛=0

𝑎𝑛 = 1 , 𝑏0 = 𝑎0 , 𝑏1 = 𝑎1 , ∀𝑛 ⩾ 2 , 𝑏𝑛 = 𝑎𝑛 +
𝑛−1
∑
𝑘=1

𝑏𝑘𝑎𝑛−𝑘

1) Donner une majoration simple de chacune de ces suites. Qu’en déduit-on pour les rayons de
convergence 𝑅𝑎 et 𝑅𝑏 de ∑𝑎𝑛𝑧𝑛 et ∑𝑏𝑛𝑧𝑛 respectivement?

2) Soient 𝑓 (𝑧) =
+∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 et 𝑔(𝑧) =
+∞
∑
𝑛=0

𝑏𝑛𝑧𝑛 , montrer que :

∀ 𝑧 ∈ C , ∣𝑧∣ < 1Ô⇒ 𝑔(𝑧) = 𝑓 (𝑧)
1 − 𝑓 (𝑧)

3) En déduire que la série ∑𝑏𝑛 diverge. Que vaut 𝑅𝑏 ?

◻ Exercice 54 (théorème de Liouville)

Soit 𝑓 (𝑧) =
∞
∑
𝑛=0

𝑎𝑛𝑧𝑛 la somme d’une série entière de rayon de convergence 𝑅 > 0.

1) Montrer que pour tout 𝑟 ∈]0, 𝑅[ et pour tout naturel 𝑛 :

∫
2𝜋

𝜃=0
𝑓 (𝑟𝑒𝑖𝜃)𝑒−𝑖𝑛𝜃 d𝜃 = 2𝜋𝑟𝑛𝑎𝑛

2) Montrer que si 𝑅 = +∞ et 𝑓 est bornée sur C, alors 𝑓 est constante.

F Séries entières et intégrales

◻ Exercice 55 Soit 𝑆(𝑥) = 𝑥 + 𝑥3

3 −
𝑥5

5 −
𝑥7

7 +⋯.
Déterminer le rayon de convergence et exprimer 𝑆 sous forme intégrale.

◻ Exercice 56 Calculer
+∞
∑
𝑛=0

(−1)𝑛
3𝑛+1

On pourra utiliser la série entière ∑ 𝑥3𝑛+1

3𝑛+1 .

◻ Exercice 57 Montrer que : ∀ 𝑥 ∈ [0, 1[, ∫
𝑥

0
ln( 1

1 − 𝑡
) d𝑡 =

+∞
∑
𝑛=1

𝑥𝑛+1

𝑛(𝑛 + 1)
.

Montrer par deux méthodes que c’est encore vrai pour 𝑥 = 1.

◻ Exercice 58 Montrer que : ∀ 𝑥 ∈ [−1, 1] , ∫
1

0

1 − 𝑡
1 − 𝑥𝑡3

d𝑡 =
+∞
∑
𝑛=0

𝑥𝑛

(3𝑛 + 1)(3𝑛 + 2)

En déduire
+∞
∑
𝑛=0

1
(3𝑛+1)(3𝑛+2) .

◻ Exercice 59 Montrer que : ∫
1

0

arctan𝑥
𝑥

d𝑥 =
+∞
∑
𝑛=0

(−1)𝑛
(2𝑛 + 1)2

.
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◻ Exercice 60 Montrer que : ∫
1

0

1√
1 − 𝑡4

d𝑡 =
+∞
∑
𝑛=0

(2𝑛𝑛 )
4𝑛 (4𝑛 + 1)

.

◻ Exercice 61 Pour 𝑛 ∈ N∗, on pose 𝑎𝑛 = ∫
+∞

0

1
(1 + 𝑡2)𝑛

d𝑡 .

1) Montrer que 𝑎𝑛 existe, et déterminer sa limite quand 𝑛 tend vers +∞.
2) Déterminer le rayon de convergence et calculer la somme de∑

𝑛⩾1
𝑎𝑛𝑥

2𝑛 .

◻ Exercice 62 Pour 𝑛 ∈ N, on pose 𝑎𝑛 = ∫
1

0
𝑡𝑛(1 − 𝑡)𝑛 d𝑡 .

1) Calculer 𝑎𝑛 .
2) Quel est le rayon de convergence de ∑𝑎𝑛𝑥𝑛 ? Calculer sa somme.

◻ Exercice 63 On pose 𝐼𝑛 = ∫
𝜋
2

0
cos𝑛 𝜃 d𝜃 . Rayon de convergence de la série entière ∑ 𝐼𝑛𝑥𝑛 .

Calcul de 𝑓 (𝑥) =
∞
∑
𝑛=0

𝐼𝑛𝑥𝑛 .

On pourra poser 𝑡 = tan (𝜃2).

◻ Exercice 64 Soit 𝑎𝑛 = ∫
1

0
( 𝑡

𝑡2 + 1
)
𝑛

d𝑡 , 𝑆(𝑥) =
+∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 .

1) Montrer que 𝑆 est définie sur [−2, 2, [.
2) Exprimer 𝑆 à l’aide des fonctions usuelles.

◻ Exercice 65 On pose 𝑢0 = 1 et pour 𝑛 ⩾ 1, 𝑢𝑛 = ∫
1

0
𝑡(𝑡 − 1)⋯(𝑡 − (𝑛 − 1)) d𝑡 . Calculer le rayon

de convergence et la somme de la série entière ∑ 𝑢𝑛
𝑛!𝑥

𝑛 .

2 Exercices plus élaborés

A Rayon de convergence

◻ Exercice 66 Soit la série entière ∑ (−1)𝑛 𝑛!𝑛𝑛𝑥3𝑛+1

1) Déterminer son rayon de convergence.
2) Etude en 𝑥 = 𝑅 et en 𝑥 = −𝑅.
◻ Exercice 67
1) Justifier la convergence de la série de terme général 𝑢𝑘 = 1

𝑘(ln𝑘)3 .

2) On pose 𝑎𝑛 =
+∞
∑
𝑘=𝑛

1
𝑘(ln𝑘)3 pour 𝑛 ⩾ 3.

Déterminer le rayon de convergence de la série entière : ∑
𝑛⩾3

𝑎𝑛𝑥𝑛 .

B Calculs de sommes

◻ Exercice 68 Rayon de convergence et somme de∑
𝑛⩾0

𝑥𝑛

(2𝑛 + 1)(2𝑛 + 3)(2𝑛 + 5)
.

◻ Exercice 69 Soit la suite (𝑎𝑛) telle que :
∀𝑛 ∈ N , 𝑎𝑛+3 = 11

6 𝑎𝑛+2 − 𝑎𝑛+1 +
1
6𝑎𝑛 , avec 𝑎0 = 1, 𝑎1, 𝑎2 ∈]0,+∞[ donnés.

15



1) Soit 𝐴𝑛 = max{∣𝑎𝑛 ∣, ∣𝑎𝑛+1∣, ∣𝑎𝑛+2∣}.
Montrer que : ∀𝑛 ∈ N , 𝐴𝑛+1 ⩽ 3𝐴𝑛 .

2) Que peut-on dire du rayon de convergence de ∑ (𝑎𝑛𝑥𝑛)?

3) Calculer
+∞
∑
𝑛=0

𝑎𝑛𝑥𝑛 .

4) En déduire 𝑎𝑛 en fonction 𝑛.

C Développements en série entière

◻ Exercice 70 Soit 𝑓 (𝑥) = ∫
𝜋

0
cos(𝑥 cos(𝑡)) d𝑡 .

1) Justifier que 𝑓 est développable en série entière en 0

2) Déterminer son développement en série entière.

◻ Exercice 71 Soit 𝑓 la fonction de variable réelle définie par : 𝑓 (𝑥) = (𝑥 +
√
1 + 𝑥2)

𝑝
, avec 𝑝

naturel non nul.

Développer 𝑓 en série entière en 0.

◻ Exercice 72 Soit 𝑎 ∈ R∗+ et 𝑓 une fonction de classe C∞ sur ] − 𝑎,𝑎[.

On suppose que pout tout 𝑥 ∈] − 𝑎,𝑎[ et tout 𝑛 ∈ N, 𝑓 (𝑛)(𝑥) ⩾ 0.

1) Pour tout entier 𝑛, on pose 𝑅𝑛 ∶ 𝑥 ↦ ∫
𝑥

0

(𝑥 − 𝑡)𝑛
𝑛!

𝑓 (𝑛+1)(𝑡)𝑑𝑡 .

Montrer que pour tout couple (𝑥,𝑦) ∈]0, 𝑎[2,

𝑥 < 𝑦 ⇒ 𝑅𝑛(𝑥)
𝑥𝑛+1

⩽ 𝑅𝑛(𝑦)
𝑦𝑛+1

.

On pourra utiliser un changement de variables pour exprimer les intégrales.
2) En déduire que 𝑓 est la somme de sa série de Taylor sur [0, 𝑎[ puis sur ] − 𝑎,𝑎[

D Études de fonctions définies comme sommes de séries entières

◻ Exercice 73 Soit (𝑎𝑛) une suite de réels qui converge vers 𝑎 /= 0.
1) Déterminer le rayon de convergence de la série entière ∑ 𝑎𝑛

𝑛 𝑥
𝑛 .

2) Soit 𝑓 (𝑥) =
+∞
∑
𝑛=1

𝑎𝑛
𝑛 𝑥

𝑛 pour 𝑥 ∈] − 1, 1[. Déterminer un équivalent de 𝑓 (𝑥) au voisinage de 1.

0n pourra développer 𝑥 z→ 𝑓 (𝑥) + 𝑎 ln(1 − 𝑥) en série entière en 0.

◻ Exercice 74
1) Déterminer le rayon de convergence de ∑ ln(𝑛)𝑥𝑛 .

2) Si 𝑆(𝑥) =
+∞
∑
𝑛=1

ln(𝑛)𝑥𝑛 , montrer que : 𝑆(𝑥) ∼
1−
− ln(1−𝑥)

1−𝑥 .

E Divers

◻ Exercice 75 Soit 𝑓 ∶ 𝑥 ↦
+∞
∑
𝑛=0

𝑥(𝑛
2).
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1) Déterminer l’ensemble de définition de 𝑓 ; montrer que 𝑓 est de classe C∞.

2) Soit 𝐹(𝑥) = ∫
+∞

0
𝑥(𝑡

2) d𝑡 . Etudier 𝐹 et montrer qu’il existe 𝐶 tel que : 𝐹(𝑥) ∼
1−

𝐶√
1 − 𝑥

.

3) En déduire un équivalent de 𝑓 en 1−.

◻ Exercice 76 (Série entière à valeurs réelles)
Soit 𝑓 la somme d’une série entière ∑𝑎𝑛𝑧𝑛 de rayon de convergence 𝑅 > 0 telle que pour tout

𝑧 ∈ 𝐷(0, 𝑅) on a 𝑓 (𝑧) ∈ R. Montrer que 𝑓 est constante.

F Séries entières et intégrales

◻ Exercice 77 Soit la série entière ∑𝑎𝑛𝑥𝑛 avec 𝑎𝑛 = ∫
1

0
𝑡𝑛𝑒−𝑡 d𝑡 .

1) Déterminer son domaine de convergence.
2) La somme est-elle intégrable sur [0, 1[?

◻ Exercice 78 Pour 𝑝 entier naturel non nul, on définit la fonction 𝐹𝑝 ∶ 𝑥 →
∞
∑
𝑛=0

𝑥𝑛
𝑝
.

1) Déterminer le rayon de convergence puis le domaine de définition de 𝐹𝑝 .

2) Soit Γ ∶ 𝑥 ↦ ∫
+∞

0
𝑒−𝑡𝑡𝑥−1 d𝑡 .

Montrer que Γ est définie et continue sur ]0,+∞[.

3) Déterminer un équivalent de 𝐹𝑝 quand 𝑥 tend vers 1− (à exprimer en fonction de Γ).
On pourra utiliser la comparaison série-intégrale, avec
𝑓 ∶ 𝑢 ↦ 𝑥𝑢𝑝

◻ Exercice 79 Soit 𝑎 un réel strictement positif ; on considère la série entière ∑
𝑛⩾0

(−1)𝑛𝑥𝑛
𝑛+𝑎 .

1) Déterminer son rayon de convergence.
2) Continuité et expression intégrale de la somme.

◻ Exercice 80 Soit 𝑎𝑛 = ∫
1

0
(1 + 𝑡

2

2
)
𝑛

d𝑡 .

1) Déterminer lim
𝑛→+∞

𝑎𝑛 .

2) Déterminer le rayon de convergence 𝑅 de la série entière ∑𝑎𝑛𝑥𝑛 .

3) Calculer la somme de la série sur ] − 𝑅,𝑅[
4) Étudier 𝑆(𝑥) en 𝑅 et en −𝑅.
◻ Exercice 81 Utilisation des intégrales de Wallis : développement en séries entières d’une inté-
grale dépendant d’un paramètre, formule de Stirling

1) Soit 𝐼𝑛 = ∫
𝜋
2

0
sin𝑛(𝜃) d𝜃 , pour 𝑛 ∈ N.

a) Montrer que : 𝐼𝑛 = ∫
𝜋
2

0
cos𝑛(𝜃) d𝜃 .

b) Sans calculer 𝐼𝑛 , montrer que la suite (𝐼𝑛) converge vers 0.
c) Montrer que (𝐼𝑛)𝑛⩾0 est décroissante, et strictement positive.
d) Calculer 𝐼𝑛 (former une relation de récurrence liant 𝐼𝑛 et 𝐼𝑛−2), donner plusieurs écritures

de 𝐼𝑛 .
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e) Justifier que : ∀𝑛 ∈ N , 𝐼𝑛+2𝐼𝑛 ⩽
𝐼𝑛+1
𝐼𝑛
⩽ 1, et en déduire la limite de la suite ( 𝐼𝑛+1𝐼𝑛 ).

f) Montrer que la suite (𝑛𝐼𝑛𝐼𝑛−1)𝑛⩾1 est constante, donner la valeur de cette constante.
g) Déduire des deux questions précédentes que : 𝐼𝑛 ∼

+∞

√
𝜋
2𝑛 .

2) Soit la fonction 𝐹 𝑥 z→ ∫
𝜋
2

0

1√
1 − 𝑥 cos2(𝜃)

d𝜃 .

a) Montrer que 𝐹 est définie pour 𝑥 < 1 ; que se passe-til pour 𝑥 = 1?
b) Etudier sans calcul le sens de variations de 𝐹 .

Montrer que 𝐹 est continue sur ] −∞, 1[.

c) Donner le développement en série entière de 𝑋 z→ 1√
1−𝑋
=
+∞
∑
𝑛=0

𝛼𝑛𝑋𝑛 et son intervalle

ouvert de convergence. Comparer 𝛼𝑛 et 𝐼2𝑛 .
d) Montrer que 𝑥 z→ 𝐹(𝑥) est développable en série entière sur ] − 1, 1[, et déterminer son

développement.

3) Formule de Stirling
a) Pour 𝑛 ⩾ 1 on pose : 𝑎𝑛 = 𝑛!

𝑛𝑛+
1
2 𝑒−𝑛

, et 𝑏𝑛 = ln(𝑎𝑛). Montrer que la suite 𝑏𝑛 est convergente.

On pourra étudier la nature de la série de terme général : 𝑡𝑛 = 𝑏𝑛−1 −𝑏𝑛 .
b) En déduire que la suite (𝑎𝑛) converge vers un réel ℓ > 0.
c) Calculer ℓ en utilisant a).

En déduire la formule de Stirling : 𝑛! ∼
+∞

√
2𝜋 𝑛𝑛+

1
2 𝑒−𝑛 .

◻ Exercice 82 Déterminer le développement en série entière de la fonction 𝑓 définie par

𝑓 (𝑥) = ∫
𝜋
2

0
ln(1 + 𝑥 sin2(𝑡)) d𝑡

Étudier la convergence de la série obtenue aux bornes de l’intervalle de convergence.
Calculer 𝑓 .

On pourra montrer que 𝑓 est dérivable, calculer 𝑓 ′ et en déduire 𝑓 .

◻ Exercice 83 Déterminer le domaine de définition D de la fonction

𝑓 ∶ 𝑥 ↦ 𝑓 (𝑥) = ∫
∞

0
𝑒−𝑡𝑥

sh 𝑡
𝑡

d𝑡 , et calculer 𝑓 (𝑥) pour tout 𝑥 ∈ D .

◻ Exercice 84 Soient 𝑥, 𝑡 réels, ∣𝑥 ∣ < 1.
1) Calculer Re ( 1

𝑥−𝑒𝑖𝑡 ).
2) Ecrire ln(𝑥2 − 2𝑥 cos 𝑡 + 1) sous la forme d’une série.

3) Montrer que : ∫
𝜋

0
(ln(𝑥2 − 2𝑥 cos(𝑡) + 1))2 d𝑡 = 2𝜋

+∞
∑
𝑛=1

𝑥2𝑛

𝑛2
.

◻ Exercice 85 Soit (𝑎𝑛)𝑛⩾0 définie par : 𝑎0 = 1 et ∀𝑛 > 0, 𝑎𝑛 =
𝑛−1
∑
𝑘=0

𝑎𝑘𝑎𝑛−1−𝑘 .

(on peut montrer que 𝑎𝑛 est le nombre de mots de parenthèses de longueur 2𝑛)

On note 𝑅𝑎 le rayon de convergence de la série entière ∑𝑛⩾0 𝑎𝑛𝑥𝑛 et 𝑓 sa fonction somme.

1) Pour tout 𝑥 tel que ∣𝑥 ∣ < 𝑅𝑎 , former une équation du second degré vérifiée par 𝑓 (𝑥).
On pourra utiliser un produit de Cauchy.

2) Montrer que 𝑅𝑎 ⩽ 1
4 . En déduire une expression de 𝑓 sur ] − 𝑅𝑎, 𝑅𝑎[.

3) En supposant que 𝑅𝑎 > 0, exprimer 𝑎𝑛 en fonction de 𝑛.
4) Faire une synthèse.
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CHAPITRE 11

Espaces préhilbertiens I

1 Applications du cours

A Produit scalaire : généralités

◻ Exercice 1 Soit 𝐸 un espace euclidien et (𝑥,𝑦) ∈ 𝐸2 ; calculer ∥ ∥𝑦∥2𝑥 − (𝑥 ∣𝑦)𝑦 ∥2 et retrouver
l’inégalité de Cauchy-Schwarz, et l’étude du cas d’égalité.

◻ Exercice 2 Soit 𝐸 = R[𝑋 ], ∀ (𝑃,𝑄) ∈ 𝐸2 , on pose
(𝑃 ∣𝑄) = 1

4(𝑃(1)𝑄(1) + 2𝑃(0)𝑄(0) + 𝑃(−1)𝑄(−1)).
1) ( ∣ ) est-il un produit scalaire sur 𝐸 ?
2) ( ∣ ) est-il un produit scalaire sur R2[𝑋 ]? Base orthonormale?
◻ Exercice 3 Soit 𝐸 = R [𝑋 ] est muni du produit scalaire :

(𝑃 ∣𝑄) = ∫
1

0
𝑃 (𝑡)𝑄 (𝑡)𝑑𝑡

Soit 𝑃0 un polynôme non nul, et 𝐹0 = 𝑃0.R [𝑋 ] l’ensemble des multiples de 𝑃0
Montrer que 𝐹0 est un sous-espace-vectoriel de R [𝑋 ] . Déterminer (𝐹0)⊥.

◻ Exercice 4 Trouver les fonctions 𝑓 continues sur [𝑎,𝑏] telles que : toute fonction 𝑔 continue

sur [𝑎,𝑏] vérifiant ∫
𝑏

𝑎
𝑔 (𝑡) d𝑡 = 0 vérifie également ∫

𝑏

𝑎
𝑓 (𝑡)𝑔 (𝑡) d𝑡 = 0.

◻ Exercice 5
1) Soient 𝑎 < 𝑏 ; on suppose que ℎ est continue sur [𝑎,𝑏], et à valeurs réelles positives.

Montrer que ∫
𝑏

𝑎
ℎ(𝑥) d𝑥 = 0Ô⇒ ℎ ≡ 0.

2) Soit 𝐸 l’ensemble des fonctions continues sur [𝑎,𝑏] à valeurs réelles. On définit :

∀(𝑓 ,𝑔) ∈ 𝐸 × 𝐸 , (𝑓 ∣𝑔) = ∫
𝑏

𝑎
𝑓 (𝑥)𝑔(𝑥) d𝑥

Montrer que ( ∣ ) est un produit scalaire sur 𝐸.
◻ Exercice 6 Soit 𝐸 un espace euclidien, trouver une condition nécessaire et suffisante sur un
couple (𝑥,𝑦) ∈ 𝐸2 pour que : ∥𝑥 −𝑦∥ = ∣∥𝑥∥ − ∥𝑦∥∣.
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B Familles de vecteurs, orthogonales ou autres

◻ Exercice 7 Soit (𝑒1, . . . , 𝑒𝑛) une base quelconque de 𝐸 espace vectoriel euclidien. Montrer que :
∀ (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛 , ∃! 𝑥 ∈ 𝐸, , ∀ 𝑖 ∈ {1, . . . , 𝑛} , (𝑥 ∣𝑒𝑖) = 𝑎𝑖 .

◻ Exercice 8 Soit 𝐸 un espace vectoriel euclidien, et (𝑢, 𝑣) ∈ 𝐸2 tel que ∥𝑢∥ = ∥𝑣∥ = 1.

Montrer que (𝑢 + 𝑣,𝑢 − 𝑣) est une famille orthogonale de 𝐸 ; en déduire un procédé de construction
d’une base orthonormale d’un plan vectoriel de 𝐸 de base (𝑎,𝑏) (𝑎 et 𝑏 non nécessairement unitaires).

◻ Exercice 9 Soit 𝐸 un epace euclidien, (𝑒1,⋯, 𝑒𝑛) une base orthonormale de 𝐸 et 𝑝 ∈ {2,⋯, 𝑛 − 1}.

On note 𝐹 = {𝑥 =
𝑛

∑
𝑖=1
𝑥𝑖𝑒𝑖 /

𝑝

∑
𝑖=1
𝑥𝑖 = 0}.

Montrer que 𝐹 est un sous-espace vectoriel de 𝐸, en trouver une base, donner sa dimension, déter-
miner 𝐹⊥.

C Polynômes orthogonaux

◻ Exercice 10 Polynômes de Tchebychev :

1) Montrer qu’il existe une unique suite de polynômes (𝑇𝑛)𝑛∈N de R [𝑋 ] tels que :

∀𝑛 ∈ N ∀𝑥 ∈ R 𝑇𝑛(cos𝑥) = cos𝑛𝑥.

2) Montrer que l’on définit un produit scalaire sur R [𝑋 ] en posant :

∀(𝑃,𝑄) ∈ R [𝑋 ]2 (𝑃 ∣𝑄) = ∫
1

−1

𝑃(𝑡)𝑄(𝑡)√
1 − 𝑡2

𝑑𝑡

On commencera par vérifier que l’intégrale converge.

Calculer (𝑇𝑚 ∣𝑇𝑛) , pour (𝑚,𝑛) ∈ N2.

D Projecteurs orthogonaux et symétries orthogonales

◻ Exercice 11 Soit 𝐸 un espace euclidien de dimension 3, dont (𝑒1, 𝑒2, 𝑒3) est une base orthonor-
mal ; soient trois réels 𝛼, 𝛽,𝛾 tels que : 𝛼2 + 𝛽2 +𝛾2 = 1. Soit 𝑃 le plan d’équation 𝛼𝑥 + 𝛽𝑦 +𝛾𝑧 = 0.

Donner la matrice (dans la base (𝑒1, 𝑒2, 𝑒3)) de la projection orthogonale sur 𝑃 et la matrice de la
réflexion par rapport à 𝑃 .

◻ Exercice 12 Soit B la base canonique de R4 muni de sa structure euclidienne usuelle, et

𝐹 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4/{ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 0
𝑥1 − 𝑥2 + 𝑥3 − 𝑥4 = 0

}.

1) Montrer que 𝐹 est un sous-espace vectoriel de 𝐸, déterminer sa dimension et en donner une
base.

2) Déterminer la matrice, relativement à B, de la projection orthogonale sur 𝐹 .

◻ Exercice 13 Soit B la base canonique de R4 muni de sa structure euclidienne usuelle, et

𝐹 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4/{ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 0
𝑥1 + 2𝑥2 + 3𝑥3 + 4𝑥4 = 0

}.

1) Montrer que 𝐹 est un sous-espace vectoriel de 𝐸, déterminer sa dimension et en donner une
base.
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2) Déterminer la matrice, relativement à B, de la symétrie orthogonale sur 𝐹 .

◻ Exercice 14 L’espace R3 est muni de sa structure euclidienne usuelle. Déterminer l’image du
plan d’équation 𝑥 +𝑦 + 𝑧 = 0 par le retournement d’axe 𝐷 défini par 𝑥 + 2𝑦 = 0 et 𝑥 +𝑦 − 𝑧 = 0.

◻ Exercice 15 Soit𝑈 une matrice colonne à 𝑛 éléments réels telle que𝑈 ⊺𝑈 = 1.

Quelle est la nature de l’endomorphisme de R𝑛 de matrice 𝐴 = 𝐼𝑛 − 2𝑈𝑈 ⊺ ?

◻ Exercice 16 Soit 𝐸 un espace vectoriel de dimension 3, rapporté à une base orthonormale ;
caractériser les endomorphismes dont les matrices dans cette base sont :

𝐴 = 1
6

⎛
⎜
⎝

1 2 −1
2 4 −2
−1 −2 1

⎞
⎟
⎠
, 𝐵 = 1

9

⎛
⎜
⎝

8 −1 −4
−1 8 −4
−4 −4 −7

⎞
⎟
⎠

◻ Exercice 17 Soit 𝐸 = R3[𝑋 ], muni du produit scalaire (𝑃 ∣𝑄) = ∫
1

0
𝑃(𝑡)𝑄(𝑡) d𝑡

Trouver une base orthonormée de 𝐻 où 𝐻 = {𝑃 ∈ 𝐸/𝑃(1) = 0}. Déterminer le projeté orthogonal sur
𝐻 de 𝑋 3.

◻ Exercice 18 Soit (𝑃) le plan d’équation : 𝑥 +𝑦 + 𝑧 = 0.
1) Déterminer la matrice 𝐴, dans la base canonique, de la projection orthogonale sur 𝑃 .
2) La matrice 𝐴 est-elle inversible ? diagonalisable? éléments propres?

◻ Exercice 19 Soit (𝐸, (.∣.)) un espace vectoriel euclidien et 𝑝 ∈L (𝐸) un projecteur orthogonal.

Soit B = (𝑒1, . . . , 𝑒𝑛) une base orthonormale de 𝐸.

Montrer que
𝑛

∑
𝑖=1
∥𝑝(𝑒𝑖)∥2 = rg(𝑝).

E Distance à un sous-espace vectoriel

◻ Exercice 20 On munit R2[𝑋 ] du produit scalaire (𝑃 ∣𝑄) = ∫
1

0
𝑃(𝑡)𝑄(𝑡) d𝑡 .

Chercher une base orthonormale et déterminer : inf
(𝑎,𝑏)∈R2∫

1

0
(𝑥2 − 𝑎𝑥 −𝑏)2 d𝑥 .

◻ Exercice 21 Calculer inf
(𝑎,𝑏)∈R2∫

1

0
𝑥2(ln𝑥 − 𝑎𝑥 −𝑏)2 d𝑥 .

◻ Exercice 22 Calculer : inf
(𝑎,𝑏)∈R2∫

𝜋

0
(𝑥 − 𝑎 cos(𝑥) −𝑏 sin(𝑥))2 d𝑥 .

◻ Exercice 23 Soit 𝐸 = R𝑛[𝑋 ] ; soit l’application ( ∣ ) définie sur 𝐸2 par :

∀𝑃,𝑄 ∈ 𝐸, 𝑃 =
𝑛

∑
𝑘=0

𝑎𝑘𝑋𝑘 , 𝑄 =
𝑛

∑
𝑘=0
𝑏𝑘𝑋𝑘 , (𝑃 ∣𝑄) =

𝑛

∑
𝑘=0

𝑎𝑘𝑏𝑘 .

1) Montrer que ( ∣ ) est un produit scalaire sur 𝐸.
2) Montrer que 𝐻 = {𝑃 ∈ 𝐸/𝑃(1) = 0} est un sous-espace vectoriel de 𝐸 ; en donner sa dimension

et une base.
3) Déterminer 𝑝(1), où 𝑝 est la projection orthogonale sur 𝐻 , puis 𝑑(1, 𝐻).
4) Déterminer 𝑝(𝑋), où 𝑝 est la projection orthogonale sur 𝐻 , puis 𝑑(𝑋,𝐻).
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◻ Exercice 24 On munit M𝑛(R) du produit scalaire usuel. Soit 𝐴 la matrice de M𝑛(R) ayant des
1 sur toute sa première ligne et des zéros partout ailleurs. Soit 𝐹 l’espace vect(𝐼 ,𝑈 , . . . ,𝑈 𝑛−1) où 𝑈
est la matrice

⎛
⎜⎜⎜
⎝

0 1 (0)
⋮ ⋱ ⋱
0 (0) ⋱ 1
1 0 . . . 0

⎞
⎟⎟⎟
⎠

Déterminer la projection orthogonale de 𝐴 sur 𝐹 . Calculer d(𝐴, 𝐹).

◻ Exercice 25 Soit 𝐸 = R[𝑋 ], montrer que l’application

∀(𝑃,𝑄) ∈ R[𝑋 ] , (𝑃 ∣𝑄) = ∫
+∞

0
𝑒−𝑡𝑃(𝑡)𝑄(𝑡) d𝑡

est un produit scalaire sur 𝐸.

Déterminer inf
(𝑎,𝑏)∈R2∫

+∞

0
𝑒−𝑡(𝑡2 − 𝑎𝑡 −𝑏)2 d𝑡 .

F Adjoint

◻ Exercice 26
1) Soit 𝐸 un espace euclidien, 𝑢 ∈L (𝐸) ; montrer que Ker(𝑢∗ ○𝑢) = Ker(𝑢).
2) Soit 𝐴 ∈M𝑛(R) ; comparer Ker(𝐴⊺𝐴) et Ker(𝐴).
◻ Exercice 27 Soit 𝐸 un espace euclidien, 𝑓 ∈L (𝐸) et 𝑓 ∗ son adjoint. Montrer que :

Ker(𝑓 ∗) = (Im𝑓 )⊥ et Im(𝑓 ∗) = (Ker𝑓 )⊥

◻ Exercice 28 M𝑛(R) est muni du produit scalaire usuel et 𝐴 ∈M𝑛(R). Déterminer l’adjoint de
l’application :

𝜙𝐴 ∶ M𝑛(R) Ð→ M𝑛(R)
𝑀 z→ 𝐴𝑀

◻ Exercice 29 Soit 𝑢 un endomorphisme d’un espace euclidien 𝐸.

Montrer que ∥𝑢∥op = ∥𝑢∗∥op =
√
∥𝑢 ○𝑢∗∥op =

√
∥𝑢∗ ○𝑢∥op

(On procédera par inégalités)

G Isométries vectorielles

◻ Exercice 30 On considère R3 muni de sa structure euclidienne orientée usuelle. Pour tous réels
strictement positifs 𝑎,𝑏, 𝑐 on note𝑀(𝑎,𝑏, 𝑐) la matrice

𝑀(𝑎,𝑏, 𝑐) = −2/3
⎛
⎜
⎝

−1/2 𝑏/𝑎 𝑐/𝑎
𝑎/𝑏 −1/2 𝑐/𝑏
𝑎/𝑐 𝑏/𝑐 −1/2

⎞
⎟
⎠

Déterminer une condition nécessaire et suffisante pour que𝑀 ∈𝑂3(R), pour que𝑀 ∈𝑂+3 (R).

Décrire les transformations associées à ces matrices𝑀(𝑎,𝑏, 𝑐) dans la base canonique de R3.

◻ Exercice 31 Soit 𝐴 =
⎛
⎜
⎝

𝑎 𝑏 𝑏
𝑏 𝑎 𝑏
𝑏 𝑏 𝑎

⎞
⎟
⎠
avec (𝑎,𝑏) ∈ R × R.
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Déterminer une condition nécessaire et suffisante sur 𝑎,𝑏 pour que 𝐴 soit une matrice orthogonale ;
déterminer la nature de l’endomorphisme canoniquement associé.

◻ Exercice 32 Déterminer toutes les matrices de M3(R) qui sont symétriques et orthogonales.

◻ Exercice 33 Soit 𝐸 un espace vectoriel euclidien. Soit 𝑓 ∈ L (𝐸) tel que :

∀ (𝑥,𝑦) ∈ 𝐸 × 𝐸 , (𝑥 ∣𝑦) = 0 Ô⇒ (𝑓 (𝑥)∣𝑓 (𝑦)) = 0

Montrer qu’il existe 𝛼 ∈ [0,+∞[ , ∀ (𝑥,𝑦) ∈ 𝐸 × 𝐸 , (𝑓 (𝑥)∣𝑓 (𝑦)) = 𝛼(𝑥 ∣𝑦).

◻ Exercice 34 L’espace R3 est muni de sa structure euclidienne orientée usuelle. Déterminer la
matrice dans la base canonique de la rotation d’angle

𝜋

2
et d’axe orienté par Ð→𝑢 = (1, 1, 1).

◻ Exercice 35 Soient 𝐸 un espace vectoriel euclidien, 𝑢 un vecteur non nul de 𝐸 et 𝜆 un réel non
nul.
On considère l’application 𝑓 ∶ 𝐸 → 𝐸 définie par

𝑓 ∶ 𝑥 ↦ 𝑥 + 𝜆(𝑢∣𝑥)𝑢

Déterminer une condition nécessaire et suffisante sur 𝜆 et𝑢 pour que 𝑓 soit une isométrie vectorielle
de 𝐸. Déterminer alors 𝑓 .

◻ Exercice 36 Soient 𝐸 un espace vectoriel euclidien et 𝑢 une isométrie vectorielle de 𝐸.
On suppose qu’il existe un vecteur 𝑥 de 𝐸 tel que 𝑢(𝑥) /= 𝑥 , on pose 𝑦 = 𝑢(𝑥).
1) Démontrer qu’il existe une unique réflexion 𝑠 de 𝐸 telle que 𝑠(𝑥) = 𝑦.
2) Démontrer que : Ker(𝑢 − id𝐸) ⊂ Ker(𝑠 − id𝐸).
3) Démontrer que : dim(Ker(𝑠 ○𝑢 − id𝐸)) > dim(Ker(𝑢 − id𝐸)).
4) Démontrer, par récurrence, que tout automorphisme orthogonal de 𝐸 est une composée de

réflexions.

◻ Exercice 37 Soit la matrice : 𝐴 = 1
9

⎛
⎜
⎝

7 4 −4
−4 8 1
4 1 8

⎞
⎟
⎠

1) Montrer que 𝐴 est une matrice orthogonale.
2) Déterminer les caractéristiques de l’isométrie représentant 𝐴 dans une base orthonormale di-

recte.

◻ Exercice 38 Soit 𝐸 un espace euclidien orienté de dimension 3, et B une base orthonormale
directe de 𝐸. Déterminer la nature de l’endomorphisme 𝑓 tel que

MatB(𝑓 ) = 1
9

⎛
⎜
⎝

8 −1 4
−4 −4 7
1 −8 −4

⎞
⎟
⎠
.

◻ Exercice 39 Soit 𝑅 = 𝑎
⎛
⎜
⎝

1 1 −𝑏 1 +𝑏
1 +𝑏 1 1 −𝑏
1 −𝑏 1 +𝑏 1

⎞
⎟
⎠
. Déterminer des conditions nécessaires et suffi-

santes sur (𝑎,𝑏) ∈ R2 pour que 𝑅 soit une matrice de rotation.

2 Exercices plus élaborés
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A Produit scalaire : généralités

◻ Exercice 40 Soit 𝐸 un espace vectoriel euclidien. Soit 𝑎,𝑏 ∈ 𝐸 fixés. Déterminer les bornes
inférieures et supérieures de

{(𝑥 ∣𝑎)(𝑥 ∣𝑏)
∥𝑥∥2

; 𝑥 ∈ 𝐸 ∖ {0}}

◻ Exercice 41 Soit 𝐸 un espace euclidien, muni d’un produit scalaire noté ( ∣ ), dont la norme
euclidienne associée est notée ∥ ∥.

Soit 𝑓 un endomorphisme de 𝐸 tel que :

∀𝑥 ∈ 𝐸 , ∥𝑓 (𝑥)∥ ⩽ ∥𝑥∥

On se propose de montrer par deux méthodes que Ker(𝑓 − id) et Im(𝑓 − id) sont supplémentaires
dans 𝐸.

1) a) Soit (𝑥,𝑦) un couple de vecteurs fixé appartenant à Ker(𝑓 − id) × 𝐸.

En utilisant la fonction 𝜑 définie sur R par :

∀𝜆 ∈ R , 𝜑(𝜆) = ∥𝑓 (𝜆𝑥 +𝑦)∥2 − ∥𝜆𝑥 +𝑦∥2

montrer que (𝑥 ∣𝑓 (𝑦) −𝑦) = 0.

Déduire de ce qui précède que Ker(𝑓 − id) et Im(𝑓 − id) sont orthogonaux.
b) Montrer que Ker(𝑓 − id) et Im(𝑓 − id) sont supplémentaires dans 𝐸.

2) On se propose de retrouver ce résultat autrement :

Soit 𝑥 ∈ Ker(𝑓 − id) ∩ Im(𝑓 − id) ; il existe donc un vecteur 𝑦 de 𝐸 tel que : 𝑥 = 𝑓 (𝑦) −𝑦.

Montrer que : ∀𝑛 ∈ N, 𝑓 𝑛(𝑦) = 𝑛𝑥 +𝑦.

En déduire que : ∀𝑛 ∈ N ∖ {0}, ∥𝑥∥ ⩽ 2
𝑛∥𝑦∥, puis que 𝑥 = 0𝐸 .

Conclure.

B Familles de vecteurs, orthogonales ou autres

◻ Exercice 42 Soit 𝐸 un espace euclidien, 𝑝 ∈ N∗ , (𝑒1, . . . , 𝑒𝑝) ∈ 𝐸𝑝 tel que :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀ 𝑖 ∈ {1, . . . , 𝑝} , ∥𝑒𝑖∥ = 1

∀ 𝑥 ∈ 𝐸 ,
𝑝

∑
𝑖=1
(𝑥 ∣𝑒𝑖)2 = ∥𝑥∥2

Montrer que (𝑒1, . . . , 𝑒𝑝) est une famille orthonormale, puis une base de 𝐸.

◻ Exercice 43 Soit B = (𝑒1,⋯, 𝑒𝑛) une base orthonormale d’une espace vectoriel euclidien 𝐸, et
soient (𝑢1,⋯,𝑢𝑛) ∈ 𝐸𝑛 .

∀ 𝑖 ∈ [[1, 𝑛id , on pose 𝑣𝑖 = 𝑢𝑖 + 𝑒𝑖 . Montrer que si :
𝑛

∑
𝑖=1
∥𝑢𝑖∥2 < 1, alors (𝑣1,⋯, 𝑣𝑛) est libre.

◻ Exercice 44 Soit 𝐸 un espace vectoriel euclidien de dimension𝑛 ; montrer qu’il existe𝑛 vecteurs
(𝑢1, . . . ,𝑢𝑛) ∈ 𝐸𝑛 tels que :

{
i) ∀ 𝑖 ∈ {1, . . . , 𝑛} , ∥𝑢𝑖∥ = 1
ii) ∀ (𝑖, 𝑗) ∈ {1, . . . , 𝑛}2 , 𝑖 /= 𝑗 Ô⇒ ∥𝑢𝑖 −𝑢 𝑗∥ = 1
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Indications : déterminer une propriété équivalente à la condition ii) (pour une famille de vecteurs
unitaires), et ne portant que sur les (𝑢𝑖 ∣𝑢 𝑗) ; montrer que si une telle famille existe, c’est une base de
𝐸 ; ensuite, on pourra procéder par récurrence sur 𝑛 = dim𝐸.

◻ Exercice 45 Soit 𝐸 un espace vectoriel euclidien de dimension 𝑛 ; montrer que le cardinal maxi-
mal d’une famille (𝑢𝑖)𝑖∈{1,...,𝑝} de vecteurs de 𝐸 vérifiant :
∀ 𝑖, 𝑗 ∈ {1, . . . , 𝑝} , 𝑖 /= 𝑗 Ô⇒ (𝑢𝑖 ∣𝑢 𝑗) < 0 est 𝑛 + 1.

◻ Exercice 46 Soit (𝑢1, . . . ,𝑢𝑛) une suite de vecteurs unitaires distincts dans un espace vectoriel
euclidien 𝐸 ; on suppose qu’il existe 𝛼 tel que :
∀ (𝑖, 𝑗) ∈ {1, . . . , 𝑛}2 , 𝑖 /= 𝑗 Ô⇒ (𝑢𝑖 ∣𝑢 𝑗) = 𝛼 et (𝑢1, . . . ,𝑢𝑛) liée.

1) Montrer que :
𝑛

∑
𝑖=1
𝑢𝑖 = 0 et que dim(vect(𝑢1, . . . ,𝑢𝑛)) = 𝑛 − 1.

2) Montrer que 𝛼 = − 1
𝑛−1 . Construire un tel système par récurrence sur 𝑛.

◻ Exercice 47 Inégalité d’Hadamard :
Soit 𝐸 un espace vectoriel euclidien orienté de dimension 𝑛 ⩾ 1.
1) Montrer que :

∀ (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐸𝑛 , ∣[𝑥1, 𝑥2, . . . , 𝑥𝑛]∣ ⩽ ∥𝑥1∥ ∥𝑥2∥ . . . ∥𝑥𝑛∥

2) Montrer que si tous les 𝑥𝑖 sont non nuls, on a égalité si et seulement si (𝑥1, 𝑥2, . . . , 𝑥𝑛) est une
base orthogonale de 𝐸.

◻ Exercice 48 Soit 𝐴 = (𝑎𝑖 𝑗) ∈ M𝑛(R), (𝐶1,⋯,𝐶𝑛) ses vecteurs colonnes ; ∥ ∥ désigne la norme
euclienne usuelle sur R𝑛 .

1) Montrer que : ∣det(𝐴)∣ ⩽
𝑛

∏
𝑖=1
∥𝐶𝑖∥.

2) On suppose maintenant que : ∀(𝑖, 𝑗) ∈ [[1, 𝑛]]2 , ∣𝑎𝑖 𝑗 ∣ ⩽ 1.

Montrer que : ∣det(𝐴)∣ ⩽ 𝑛
𝑛
2 et trouver une matrice (2, 2) vérifiant l’égalité.

◻ Exercice 49 Déterminant de Gram :

soit 𝐸 un espace vectoriel euclidien, 𝑛 ∈ N∗, 𝑛 ⩽ dim𝐸, (𝑢1, ...,𝑢𝑛) ∈ 𝐸𝑛 et B = (𝑒1, ..., 𝑒𝑛) une base
orthonormale d’un sous-espace de 𝐸 contenant𝑢1, ...,𝑢𝑛 ; on note𝐴 la matrice du système (𝑢1, ...,𝑢𝑛)
dans la base B et 𝐺(𝑢1, ...,𝑢𝑛) la matrice ((𝑢𝑖 ∣𝑢 𝑗))1⩽𝑖, 𝑗⩽𝑛 , appelée matrice de Gram du système
(𝑢1, ...,𝑢𝑛).

1) Montrer que𝐺(𝑢1, ...,𝑢𝑛) = 𝐴⊺𝐴. En déduire, lorsque 𝑛 = dim𝐸, la propriété du produit mixte :

[𝑢1, ...,𝑢𝑛]2 = det𝐺(𝑢1, ...,𝑢𝑛)

2) Montrer que rg(𝐴) = rg (𝐴⊺𝐴) ; en déduire rg(𝑢1, ...,𝑢𝑛) = rg(𝐺(𝑢1, ...,𝑢𝑛)).
3) Soit 𝐹 un sous-espace strict de 𝐸 muni d’une base (𝑏1, ...,𝑏𝑝) et 𝑣 un vecteur de 𝐸.Montrer que

la distance 𝑑 de 𝑣 à 𝐹 est donnée par :

𝑑2 =
det𝐺(𝑏1, ...,𝑏𝑝, 𝑣)
det𝐺(𝑏1, ...𝑏𝑝)

.

◻ Exercice 50 Soit (𝑢𝑘)1≤𝑘≤𝑛 une famille de vecteurs de l’espace euclidien (𝐸, (.) ) de dimension
𝑛.
On suppose que pour tout 𝑖 , ∥𝑢𝑖∥ = 1 et pour tous 𝑖, 𝑗 distincts : ∥𝑢𝑖 −𝑢 𝑗∥ = 1. Montrer que la famille
(𝑢𝑘)1≤𝑘≤𝑛 est libre.
Montrer ensuite qu’une telle famille existe dans 𝐸.
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C Polynômes orthogonaux

◻ Exercice 51 Polynômes de Laguerre :
soit 𝐸 = {𝑓 ∶ R+ → R / 𝑓 continue et 𝑡 ↦ [𝑓 (𝑡)]2 𝑒−𝑡 intégrable sur R+} .

1) Montrer que 𝐸 est un R-espace vectoriel contenant R [𝑋 ] et que

(𝑓 ∣𝑔) = ∫
+∞

0
𝑓 (𝑡)𝑔(𝑡)𝑒−𝑡d𝑡 définit un produit scalaire sur 𝐸.

2) On pose : ∀𝑛 ∈ N 𝐿𝑛(𝑥) = 1
𝑛! ⋅ 𝑒𝑥 ⋅

d𝑛
d𝑥𝑛 (𝑥𝑛𝑒−𝑥) .

Montrer que 𝐿𝑛 est une fonction polynôme ; expliciter 𝐿𝑛 .
3) Pour𝑚 ⩽ 𝑛, calculer (𝐿𝑛 ∣𝑋𝑚) et (𝐿𝑛 ∣𝐿𝑚) .

D Projecteurs orthogonaux et symétries orthogonales

◻ Exercice 52 Soit 𝐸 un espace vectoriel euclidien et 𝑝 une projection vectorielle de 𝐸 ; montrer
que :
(𝑝 est une projection orthogonale) ⇐⇒ (∀ 𝑥 ∈ 𝐸 , ∥𝑝(𝑥)∥ ⩽ ∥𝑥∥).

◻ Exercice 53 Soit 𝐸 un espace euclidien. On considère deux projecteurs orthogonaux 𝑝 et 𝑞 de
𝐸 tels que 𝑞 − 𝑝 soit un projecteur de 𝐸.

1) Démontrer que pour tout 𝑥 dans 𝐸 : (𝑝(𝑥)∣𝑥) = ∥𝑝(𝑥)∥2, puis que

pour tout 𝑥 dans Im(𝑝), on a : (𝑞(𝑥)∣𝑥) = ∥𝑥∥2. On pourra utiliser qu’un projecteur orthogonal
a pour adjoint lui-meême.

2) Démontrer que 𝑞 ○𝑝 = 𝑝 . Que vaut 𝑝 ○𝑞 ? Cela reste-t-il vrai pour des projecteurs quelconques
dont la différence est un projecteur?

E Distance à un sous-espace vectoriel

◻ Exercice 54 Soit 𝐴 = (𝑎𝑖 𝑗) ∈M𝑛(R). Soit 𝑆𝑛(R) le R-espace vectoriel des matrices (𝑛,𝑛) symé-
triques réelles.

Déterminer min{
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
(𝑎𝑖 𝑗 −𝑚𝑖 𝑗)2 /𝑀 = (𝑚𝑖 𝑗) ∈ 𝑆𝑛(R)}.

◻ Exercice 55 Soit 𝐴 =
⎛
⎜
⎝

−1 3 −2
−1 3 −2
−1 1 0

⎞
⎟
⎠
, 𝑏 =
⎛
⎜
⎝

1
−1
1

⎞
⎟
⎠
.

1) Existe-t-il des solutions à 𝐴𝑋 = 𝑏 ?
2) Interpréter. Montrer qu’il existe 𝑋0 ∈ R3 vérifiant

∥𝐴𝑋0 −𝑏∥2 = min{∥𝐴𝑋 −𝑏∥2/𝑋 ∈ R3}, et déterminer la valeur de ce minimum.
3) 𝑋0 est-il unique? Déterminer un tel vecteur 𝑋0, puis tous.

F Adjoint

◻ Exercice 56 Soit 𝐸 un espace euclidien de dimension 𝑛 ⩾ 2, 𝑎 et 𝑏 deux vecteurs non nuls de 𝐸
tels que (𝑎∣𝑏) = 0.

On définit un endomorphisme de 𝐸 par :

∀ 𝑥 ∈ 𝐸 , 𝑢(𝑥) = (𝑎∣𝑥) 𝑏 − (𝑏∣𝑥) 𝑎
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1) Expliciter 𝑢∗ et calculer ∥𝑢∥op.
2) On suppose que : ∥𝑏∥ ⩽ ∥𝑎∥. Déterminer un endomorphisme 𝑓 ∈ L (𝐸) vérifiant les trois

conditions :
(𝑖) 𝑓 ∗ = −𝑓 (𝑖𝑖) ∣𝑓 ∣ ⩽ 1 (𝑖𝑖𝑖) 𝑓 (𝑎) = 𝑏

◻ Exercice 57 Soit 𝐸 un espace euclidien. Déterminer l’adjoint d’une symétrie de 𝐸. Quelles sont
les symétries qui sont des endomorphismes autoadjoint ?

◻ Exercice 58 Soit 𝐸 un espace vectoriel euclidien et 𝑢 ∈L (𝐸) tel que : ∀𝑥 ∈ 𝐸 (𝑢 (𝑥) ∣𝑥) = 0.

1) Montrer que 𝑢∗ = −𝑢 ; en déduire que Im(𝑢) et Ker(𝑢) sont supplémentaires orthogonaux.
2) Montrer que 𝑢 est de rang pair.

On pourra s’intéresser à l’endomorphisme induit par 𝑢 sur Im(𝑢).

◻ Exercice 59

Soit 𝐸 un espace euclidien de dimension 𝑛, 𝑎,𝑏 et 𝑥 sont trois vecteurs de 𝐸. trouver une CNS sur 𝑎,𝑏
et 𝑥 pour qu’il existe un endomorphisme 𝑓 de 𝐸 vérifiant 𝑓 (𝑥) = 𝑎 et 𝑓 ∗(𝑥) = 𝑏.

◻ Exercice 60 Soit 𝐸 un espace euclidien de dimension 𝑛. On pose

𝐴 = {𝑓 ∈L (𝐸) /𝑓 ○ 𝑓 ∗ ○ 𝑓 = 𝑓 }

1) Soit 𝑓 ∈L (𝐸). Comparer Ker(𝑓 ∗ ○ 𝑓 ) et Ker(𝑓 ), puis Im(𝑓 ∗ ○ 𝑓 ) et Im(𝑓 ∗).
2) Montrer que 𝑓 ∈ 𝐴 si et seulement si 𝑓 ∗ ○ 𝑓 est un projecteur orthogonal.
3) Montrer que 𝑓 ∈ 𝐴 si et seulement si ∀ 𝑥 ∈ (Ker(𝑓 ))⊥, on a ∥𝑓 (𝑥)∥ = ∥𝑥∥.
4) Montrer que si 𝑓 est dans 𝐴, alors on a (Ker(𝑓 ))⊥ = {𝑥 ∈ 𝐸/∥𝑓 (𝑥)∥ = ∥𝑥∥}.
◻ Exercice 61 Soit 𝐴 ∈M𝑛(R) et 𝑢 ∶M𝑛(R)→M𝑛(R) définie par 𝑢 ∶ 𝑋 ↦ 𝐴𝑋 −𝑋𝐴.
1) Déterminer l’adjoint de 𝑢 pour le produit scalaire de Schur ((𝑀,𝑁 )↦ tr(𝑀⊺𝑁 )).
2) Soit 𝐶(𝐴) = {𝑀 ∈M𝑛(R)/𝐴𝑀 =𝑀𝐴} le commutant de 𝐴. Montrer que Im(𝑢) = (𝐶 (𝐴⊺))⊥.

G Isométries vectorielles

◻ Exercice 62 Soient 𝑛 un entier naturel non nul et𝑀 = (𝑎𝑖 𝑗) ∈𝑂(𝑛).
Démontrer que : ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑛}2, ∣𝑎𝑖 𝑗 ∣ ⩽ 1.

Démontrer que : (
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑎𝑖 𝑗)

2

⩽ 𝑛4 (puis 𝑛3 et 𝑛2).

Pour la majoration par 𝑛2, on pourra utiliser le vecteur𝑤 =
𝑛

∑
𝑖=1
𝑒𝑖 de R𝑛 muni de sa structure euclidienne

usuelle où (𝑒𝑖)𝑖∈{1,...,𝑛} est la base canonique.

◻ Exercice 63

Soit 𝐸 un espace euclidien, 𝑢 ∈𝑂(𝐸) et 𝑣 = 𝑢 − 𝑖𝑑 .

1) Montrer que : Ker(𝑣) = (Im(𝑣))
⊥
.

2) Soit 𝑝 la projection orthogonale sur Ker(𝑣). Montrer que : lim
𝑛→+∞

1
𝑛

𝑛−1
∑
𝑘=0

𝑢𝑘 = 𝑝 .

◻ Exercice 64 On donne les deux droites : (𝐷1) {
𝑥 = 0
𝑦 = 0 et (𝐷2) {

𝑥 −𝑦 = 0
𝑦 − 𝑧 = 0

Image de (𝐷1) par la rotation d’angle 𝜋
6 et d’axe (𝐷2).
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◻ Exercice 65 Soit 𝐴 =
⎛
⎜
⎝

2𝑎2 − 1 2𝑎𝑏 2𝑎𝑐
2𝑎𝑏 2𝑏2 − 1 2𝑏𝑐
2𝑎𝑐 2𝑏𝑐 2𝑐2 − 1

⎞
⎟
⎠
où (𝑎,𝑏, 𝑐) ∈ R3, avec 𝑎2 +𝑏2 + 𝑐2 = 1.

1) Vérifier que l’endomorphisme 𝑢 canoniquement associé à 𝐴 est une isométrie vectorielle.
2) Reconnaitre 𝑢, éléments caractéristiques de 𝑢.

3 Exercices nécessitant plus d’inspiration

◻ Exercice 66 Soit 𝐸 = R3[𝑋 ], ∀ (𝑃,𝑄) ∈ 𝐸2 , on pose (𝑃 ∣𝑄) = ∫
1

−1
𝑃(𝑡)𝑄(𝑡) d𝑡 .

1) Montrer que ( ∣ ) est un produit scalaire sur R3[𝑋 ], déterminer la base obtenue par le procédé
de Schmidt appliqué à (1,𝑋,𝑋 2,𝑋 3).

2) Montrer que : si (𝑃 ∣𝑃) = 1, alors sup
𝑥∈[−1,1]

∣𝑃(𝑥)∣ ⩽ 2
√
2. Egalité ?
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CHAPITRE 12

Probabilités II

1 Applications du cours

◻ Exercice 1 Soit 𝑋 une variable aléatoire à valeurs dans N.

Soit (𝑋𝑛)𝑛∈N∗ une suite de variables aléatoires mutuellement indépendantes, de même loi que 𝑋 et
soit𝑀𝑛 = max(𝑋1, . . . ,𝑋𝑛).

1) Exprimer P(𝑀𝑛 ⩽ 𝑘) en fonction de P(𝑋 ⩽ 𝑘).
2) Supposons que les (𝑋𝑛) suivent une loi uniforme sur 𝑁𝐾 = {1, 2, . . . , 𝐾} où 𝐾 > 1. Exprimer

E(𝑀𝑛) et calculer lim
𝑛→+∞

E(𝑀𝑛).
3) Supposons que les (𝑋𝑛) suivent une loi géométrique de paramètre 𝑝 ∈]0, 1[. Exprimer E(𝑀𝑛)

sous la forme d’une somme.
4) Soit𝑚𝑛 = min(𝑋1, . . . ,𝑋𝑛). Donner la loi de𝑚𝑛 .

◻ Exercice 2 Soit 𝑋 une variable aléatoire suivant une loi géométrique de paramètre 𝑝 ∈]0, 1[.

Justifier l’existence et calculer l’espérance de 𝑌 = 1
2𝑋 + 1

◻ Exercice 3 Le nombre de fleurs portées par un pommier suit une loi de Poisson de paramètre
𝜆. Chaque fleur donne un fruit avec la probabilité 𝑝 .

1) Quelle est la loi conditionnelle du nombre de pommes, sachant que le nombre de fleurs est 𝑘 ?
2) Déterminer l’espérance du nombre de fruits portés par le pommier.
3) Quelle est la loi du nombre de pommes?

Cet exercice peut être vu comme un cas particulier des identités de Wald.

◻ Exercice 4 Soit 𝑋 et 𝑌 deux v.a.r indépendantes et de même loi, définie par :

{ 𝑋(Ω) = 𝑌(Ω) = N∀𝑛 ∈ N, P(𝑋 = 𝑛) = P(𝑌 = 𝑛) = 𝑝𝑞𝑛, où 𝑝 > 0, 𝑞 > 0, 𝑝 +𝑞 = 1

On pose 𝑍 = max(𝑋,𝑌). Déterminer la loi de 𝑍 et si elle existe son espérance.
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◻ Exercice 5 Soit (𝑋,𝑌) un couple de variable aléatoire discrète réelle à valeurs dans N2 tel que :

∀( 𝑗, 𝑘) ∈ N2, P((𝑋 = 𝑗) ∩ (𝑌 = 𝑘)) = 𝑗 + 𝑘
𝑒.2 𝑗+𝑘 𝑗 !𝑘!

1) Vérifier que l’on a bien défini ainsi la loi de probabilité de (𝑋,𝑌).
2) Calculer E(2𝑋+𝑌 )
◻ Exercice 6 Soit (𝑋,𝑌) un couple de variable aléatoire discrète réelle à valeurs dansN2, tel que :

∀( 𝑗, 𝑘) ∈ N2, P((𝑋 = 𝑗) ∩ (𝑌 = 𝑘)) = 𝑎

( 𝑗 + 𝑘 + 1)!

1) Déterminer 𝑎.
2) Les variables aléatoires 𝑋 et 𝑌 sont-elles indépendantes?
3) Déterminer la loi de 𝑍 = 𝑋 +𝑌 .
4) La variable 𝑍 est-elle d’espérance finie? Si oui calculer E(𝑍).
5) Retrouver ce résultat directement sans déterminer la loi de 𝑋 +𝑌 .
6) Calculer E(𝑋) et E(𝑌).
◻ Exercice 7 Un ascenseur monte et dessert 𝑛 étages d’un immeuble. Le nombre de personnes
qui montent dans cet ascenseur au rez de chaussée est une variable aléatoire 𝑋 suivant une loi de
Poisson de paramètre 𝜆.
On émet les hypothèses suivantes :

- Aucun arrêt n’est dû à des personnes désirant monter dans l’ascenseur à un autre niveau que le
rez de chaussée.

- Chaque personne choisit son étage d’arrivée au hasard et indépendamment des autres passagers.
(Ces choix se font dans l’ordre d’entrée des passagers dans l’ascenseur).

Enfin, on appelle 𝑆 la variable aléatoire égale au nombre d’arrêts de l’ascenseur.

1) Montrer que pour tout 𝑗 ∈ [[1, 𝑛]] et pour tout entier naturel 𝑘 :

P(𝑋=𝑘+1)(𝑆 = 𝑗) =
𝑗

𝑛
P(𝑋=𝑘)(𝑆 = 𝑗) +

𝑛 − 𝑗 + 1
𝑛

P(𝑋=𝑘)(𝑆 = 𝑗 − 1)

2) On note pour tout entier 𝑘 , E(𝑋=𝑘)(𝑆) l’espérance de 𝑆 pour la probabilité conditionnelle P(𝑋=𝑘).

Montrer que E(𝑋=𝑘+1)(𝑆) = 1 + (1 − 1
𝑛)E(𝑋=𝑘)(𝑆).

3) Après avoir justifié que E(𝑋=0)(𝑆) = 0, déterminer E(𝑋=𝑘)(𝑆) pour tout entier naturel 𝑘 .
4) Montrer que si 𝑆 désigne une variable aléatoire égale au nombre d’arrêts de l’ascenseur alors :

E(𝑆) = 𝑛 (1 − 𝑒
−𝜆
𝑛 )

◻ Exercice 8 On dispose d’une pièce de monnaie donnant “pile” avec la probabilité 𝑝 et “face”
avec la probabilité 𝑞 = 1 − 𝑝 (avec 𝑝 ∈ ]0, 1[). On lance cette pièce, les lancers étant indépendants les
uns des autres, et on note 𝑁 le nombre aléatoire de lancers nécessaires à la première apparition de
“pile” (on pose 𝑁 = −1 si “pile” n’apparaît jamais).

Quand “pile” apparaît au bout de 𝑛 lancers, on effectue une série de 𝑛 lancers avec cette même pièce
et on note 𝑋 le nombre de “pile” obtenus au cours de cette série.

1) Quelle est la loi de 𝑁 ?
2) Déterminer la loi du couple (𝑁,𝑋).
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3) Calculer P(𝑋 = 0) et P(𝑋 = 1).
4) Pour tout entier naturel 𝑘 non nul, exprimer P(𝑋 = 𝑘) sous forme d’une série.
5) Calculer la somme de cette série.
6) Déterminer l’espérance de 𝑋 .

On pourra utiliser le développement en série entière de 𝑥 ↦ 1
(1−𝑥)𝑘+1

Pourquoi ce résultat est-il raisonnable?

◻ Exercice 9 Soit (𝑋𝑖)𝑖∈N∗ une suite de variable aléatoire discrète réelle de Bernoulli de paramètre
𝑝 indépendantes mutuellement.
Pour 𝑛 ⩾ 1, on pose 𝑌𝑛 = 𝑋𝑛𝑋𝑛+1
1) Déterminer la loi de 𝑌𝑛 , son espérance et sa variance.
2) Les variable aléatoire discrète réelle 𝑌𝑖 sont-elles indépendantes?
3) Déterminer la matrice des covariances de (𝑌1,⋯,𝑌𝑛) et V(𝑌1 +⋯ +𝑌𝑛)

◻ Exercice 10 Un problème de ruine du joueur :
Soient 𝑠, 𝑁 deux entiers naturels non nuls. Soit 𝑝 ∈ ]0, 1[. On note 𝑞 = 1 − 𝑝 . Un individu dispose de
𝑠 euros (avec 𝑠 ∈ N∗) et souhaite acheter un bien qui en coûte 𝑁 (avec 𝑁 ∈ N∗ et 𝑁 ⩾ 𝑠). Pour tenter
de gagner de l’argent, il propose le jeu suivant à une personne très fortunée : il sort de sa poche une
pièce de monnaie (non nécessairement équilibrée) et joue selon la règle suivante :
● si la pièce tombe sur face (ce qui se produit avec la probabilité 𝑝), il gagne 1 euro ;
● si la pièce tombe sur pile, il perd 1 euro.

Le jeu s’arrête soit lorsque l’individu est en possession de 𝑁 euros, soit lorsqu’il est ruiné (si au
départ le joueur possède 𝑁 euros, alors il ne prend même pas part au jeu) …

Pour tout 𝑘 ∈ {0,⋯, 𝑁}, on note 𝑝𝑘 la probabilité de pouvoir acheter le bien avec un avoir initial de
𝑘 euros. Le nombre 𝑁 étant fixé, on admet que la variable aléatoire égale à la durée du jeu, lorsque
l’individu possède au départ 𝑘 euros, admet une espérance notée 𝐷𝑘 .

1) a) Calculer 𝑝0, 𝑝𝑁 puis 𝐷0, 𝐷𝑁 .
b) Montrer que pour tout 𝑘 ∈ {1,⋯, 𝑁 − 1}, 𝑝𝑘 = 𝑝 ⋅ 𝑝𝑘+1 +𝑞 ⋅ 𝑝𝑘−1.
c) Montrer que pour tout 𝑘 ∈ {0,⋯, 𝑁},

𝐷𝑘 = 𝑝(1 +𝐷𝑘+1) +𝑞(1 +𝐷𝑘−1)

2) Lorsque 𝑝 = 𝑞 = 1/2, calculer 𝑝𝑠 , c’est-à-dire calculer la probabilité de pouvoir acheter le bien à
l’issue du jeu avec un avoir initial de 𝑠 euros.

3) On suppose dans cette question que 𝑝 = 𝑞 = 1/2. On cherche à calculer𝐷𝑠 , c’est-à-dire à calculer
le temps moyen au bout duquel l’individu pourra acheter le bien ou sera ruiné, avec un avoir
initial de 𝑠 euros.

a) Montrer que la suite définie pour tout 𝑘 ∈ N par 𝑢𝑘 = −𝑘2 satisfait à la relation de récur-
rence :

1
2
𝑢𝑘+1 −𝑢𝑘 +

1
2
𝑢𝑘−1 = −1

b) Montrer que la suite finie (𝑣𝑘)0⩽𝑘⩽𝑁 définie par 𝑣𝑘 = 𝐷𝑘 − 𝑢𝑘 satisfait une relation de
récurrence linéaire d’ordre 2.

c) En déduire la valeur de 𝐷𝑠 .

4) Calculer 𝑝𝑠 , lorsque 𝑝 ≠ 𝑞
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◻ Exercice 11

Soit (Ω,A ,P) un espace probabilisé sur lequel sont définies toutes les variables aléatoires de l’exer-
cice.

Soit 𝑁 une variable aléatoire suivant la loi de Poisson de paramètre 𝜆 > 0.
1) a) Montrer que, pour toute fonction 𝑔 définie sur N telle que les espérances existent, on a :

E [𝑁 𝑔(𝑁 )] = 𝜆E [𝑔(𝑁 + 1)]

b) Calculer E ( 1
𝑁+1).

2) Soit 𝑇 une variable aléatoire à valeurs dans N telle qu’il existe un réel 𝜆 vérifiant, pour toute
fonction 𝑔 telle que les espérances existent,

E[𝑇𝑔(𝑇 )] = 𝜆E[𝑔(𝑇 + 1)]

La variable aléatoire 𝑇 suit-elle une loi de Poisson?

◻ Exercice 12 Soient (𝐴𝑛)𝑛⩾1 une suite d’évènements indépendants.
On note : 𝑝𝑛 = P(𝐴𝑛), 𝑝𝑛 = 𝑝1+...+𝑝𝑛

𝑛 et 𝑁𝑛 = ∑𝑛𝑘=1 1𝐴𝑘
(1𝐴𝑘

désignant la fonction caractéristique de
𝐴𝑘 ).

À l’aide de l’inégalité de Bienaymé-Tchebychev, démontrer que :

∀𝜀 > 0, P(∣𝑁𝑛
𝑛
− 𝑝𝑛∣ ⩾ 𝜀) Ð→

𝑛→∞
0

(c’est le théorème de Poisson)

◻ Exercice 13 Soit (𝑋𝑖)𝑖⩾1 une suite de variables aléatoires indépendantes à valeurs dans {±1}
telle que P(𝑋𝑖 = 1) = 𝑝 où 𝑝 ∈ [0, 1].

On note pour tout entier 𝑛, 𝑆𝑛 =
𝑛

∑
𝑖=1
𝑋𝑖 .

1) Soit 𝑛 ⩾ 1, calculer P(𝑆2𝑛 = 0).
2) Déterminer deux réels 𝑎 et 𝑏 tels que 𝑍𝑖 = 𝑎𝑋𝑖 +𝑏 suive une loi de Bernoulli pour tout 𝑖 ⩾ 1. On

note𝑇𝑛 =
𝑛

∑
𝑖=1
𝑍𝑖 . Exprimer 𝑆𝑛 à l’aide de𝑇𝑛 puis calculer les moments d’ordre 1 et 2 des variables

aléatoires 𝑇𝑛 et 𝑆𝑛 .

◻ Exercice 14

Toutes les variables aléatoires de cet exercice sont définies sur unmême espace probabilisé (Ω,A ,P).

1) Soit 𝑍 une variable aléatoire à valeurs dansN. Montrer que la variable aléatoire 2−𝑍 admet une
espérance finie. On la note 𝑟(𝑍).

On suppose maintenant que pour tout 𝑛 ∈ N, P(𝑍 = 𝑛) = (12)𝑛+1.
1) a) Montrer que l’on définit ainsi une loi de probabilité et calculer 𝑟(𝑍).

b) Montrer que pour tout (𝑛,𝑞) ∈ N2,
𝑛

∑
𝑘=0
(𝑘+𝑞𝑞 ) = (

𝑛+𝑞+1
𝑞+1 )

c) Soit (𝑋𝑖)𝑖∈N∗ une suite de variables aléatoires indépendantes de même loi que 𝑍 . Pour tout
entier 𝑞 ⩾ 1, on pose 𝑆𝑞 = ∑𝑞𝑖=1𝑋𝑖 .

Montrer que la loi de 𝑆𝑞 est définie par :

∀𝑛 ∈ N, P(𝑆𝑞 = 𝑛) = (
𝑛 +𝑞 − 1
𝑞 − 1

)(1
2
)
𝑛+𝑞
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d) Calculer 𝑟(𝑆𝑞). En déduire que
∞
∑
𝑛=0
(𝑛 +𝑞 − 1
𝑞 − 1

)(1
4
)
𝑛

= (4
3
)
𝑞

◻ Exercice 15 Moyenne et indépendance
Soient 𝑋 et 𝑌 deux variables aléatoires discrètes définies sur un même espace probabilisé (Ω,A ,P),
indépendantes et de même loi géométrique sur N∗ de paramètre 𝑝 , 0 < 𝑝 < 1 ; on note 𝑞 = 1 − 𝑝 .

On définit les variables aléatoires𝑇,𝑍 et 𝐺 par :

𝑇 = min(𝑋,𝑌) , 𝑍 = ∣𝑋 −𝑌 ∣ , 𝐺 = 𝑍
𝑇 .

1) Il s’agit d’étudier la loi d’un minimum de variables aléatoires.

a) Calculer, pour tout 𝑥 ∈ N∗, la probabilité P(𝑋 ⩾ 𝑥).
b) Calculer pour tout 𝑡 ∈ N∗, la probabilité P(𝑇 ⩾ 𝑡) et identifier la loi de 𝑇 .

2) On fait des calculs de moyennes et on on fait l’étude de la loi du couple (𝑇,𝑍).

a) Calculer les espérances E(𝑋) et E ( 1𝑋 ).
b) Calculer pour (𝑡, 𝑧) ∈ N∗×N la probabilité P(𝑇 ⩾ 𝑡,𝑍 = 𝑧) ; étudier séparément le cas 𝑧 = 0.
c) En déduire la loi de 𝑍 .

3) Démontrer alors que les variables aléatoires𝑇 et 𝑍 sont indépendantes.

On remarquera que P(𝑇 ⩾ 𝑡,𝑍 ⩾ 𝑧) s’écrit sous la forme 𝑓 (𝑡)𝑔(𝑧) où 𝑓 et 𝑔 sont des fonctions
définies respectivement sur N∗ et N et qu’il en de même pour P(𝑇 = 𝑡,𝑍 = 𝑧).

4) Que vaut E(𝐺)?

◻ Exercice 16 Soit (𝑎,𝑏) ∈ (]0, 1[)2 tel que 𝑎 +𝑏 < 1.

Un interrupteur admet deux positions que l’on note 0 et 1.

Si, à l’instant 𝑛, il est en position 0, il sera encore en position 0 à l’instant 𝑛 + 1 avec la probabilité
1 − 𝑎 et passera en position 1 avec la probabilité 𝑎.

De même, s’il est en position 1, il y restera l’instant suivant avec la probabilité 1 −𝑏 et basculera en
position 0 avec la probabilité 𝑏.

Pour tout 𝑛 ∈ N, on définit 𝑋𝑛 la position de l’interrupteur à l’instant 𝑛.

1) Montrer que, pour tout 𝑛 ∈ N,

(P(𝑋𝑛+1 = 0)
P(𝑋𝑛+1 = 1)

) = 𝐴.(
P(𝑋𝑛 = 0)
P(𝑋𝑛 = 1)

)

avec 𝐴 = (1 − 𝑎 𝑏
𝑎 1 −𝑏).

2) Si l’on suppose que 𝑋0 suit la loi de Bernoulli de paramètre 𝑎
𝑎+𝑏 , déterminer la loi de la variable

𝑋𝑛 pour tout 𝑛 ∈ N.
3) Dans le cas général, montrer que, pour tout 𝑛 ∈ N, 𝑋𝑛 suit une loi de Bernoulli dont on déter-

minera le paramètre 𝑝𝑛 .
4) Calculer lim

𝑛→+∞
P(𝑋𝑛 = 1).

5) Calculer, pour tout 𝑛 ∈ N, la covariance entre les variables 𝑋𝑛 et 𝑋𝑛+1. Quelle est la limite de la
suite (Cov(𝑋𝑛,𝑋𝑛+1))𝑛∈N ?
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◻ Exercice 17

Une urne contient 𝑁 jetons numérotées de 1 à 𝑁 , avec 𝑁 ⩾ 3.

On effectue une succession de tirages, en choisissant à chaque fois au hasard une boule, que l’on
replace dans l’urne avant le tirage suivant.

Pour 𝑛 ⩾ 2 et 𝑛 ≤ 𝑁 , on note 𝑋𝑛 le nombre aléatoire de tirages juste nécessaires pour obtenir 𝑛
numéros distincts. Pour 𝑛 ⩾ 3, on pose 𝑌𝑛 = 𝑋𝑛 −𝑋𝑛−1.

1) Quelle est la loi de 𝑋2 − 1? Déterminer espérance et variance de 𝑋2.
2) Donner une interprétation de 𝑌𝑛 , déterminer sa loi, son espérance et sa variance.
3) Déterminer l’espérance et la variance de 𝑋𝑛 .

4) On suppose𝑁 pair et on pose𝑁 = 2𝑚. Étudier la convergence des suites (E(𝑋𝑚)𝑚 )
𝑚⩾2 et (

V(𝑋𝑚)
𝑚 )

𝑚⩾2.

◻ Exercice 18 Une marque de lessive édite une collection de 4 pin’s différents. Une personne
achète des barils de cette lessive, afin que son fils puisse collectionner les pin’s (un pin’s par baril).

On suppose les achats indépendants.

1) Montrer qu’au bout de 𝑛 achats de barils, la probabilité qu’il manque toujours au moins un
pin’s à son fils est : 𝑝𝑛 = 4 (34)

𝑛 − 6 (12)
𝑛 + 4 (14)

𝑛
.

Soit 𝑋 la variable aléatoire égale au nombre de barils que la ménagère a achetés lorsque son
fils a pour la première fois tous les pin’s.

2) Exprimer P(𝑋 > 𝑛) à l’aide de la probabilité 𝑝𝑛 .
3) En utilisant 1) et 2), déduire que 𝑋 admet une espérance et la calculer.

2 Exercices plus élaborés

◻ Exercice 19 (Identités de Wald)
On considère une suite de variables aléatoires réelles mutuellement indépendantes 𝑁,𝑋1, . . . ,𝑋𝑛, . . .
définies sur le même espace probabilisé (Ω,A ,P).
On suppose que𝑁 est une variable aléatoire réelle à valeurs dansN∗ possédant un moment d’ordre 2
et que les variables aléatoires (𝑋𝑖), 𝑖 ∈ N∗, suivent la même loi que𝑋 , où 𝑋 est une variable aléatoire
réelle discrète et possédant un moment d’ordre 2.

On note 𝑌 la fonction définie par 𝑌 =
𝑁

∑
𝑖=1
𝑋𝑖 c’est-à-dire :

∀𝜔 ∈ Ω, 𝑌(𝜔) =
𝑁(𝜔)
∑
𝑖=1

𝑋𝑖(𝜔)

1) Justifier que 𝑌 est une variable aléatoire discrète.
2) Déterminer l’espérance E(𝑌) en fonction de E(𝑋) et de E(𝑁 ). On justifiera que 𝑌 est bien

d’espérance finie.
3) Déterminer E(𝑌 2) en fonction de E(𝑋), V(𝑋), E(𝑁 ) et E(𝑁 2).
4) En déduire V(𝑌) en fonction de E(𝑋), V(𝑋), E(𝑁 ) et V(𝑁 ).
5) Une urne contient 𝑛 jetons numérotés de 1 à 𝑛 et on dispose d’une pièce de monnaie qui donne

le côté pile avec la probabilité 𝑝 , où 0 < 𝑝 < 1. Un joueur tire un jeton dans l’urne et lance
ensuite la pièce de monnaie autant de fois que le numéro indiqué par le jeton.

Calculer la moyenne et la variance de la variable aléatoire comptabilisant le nombre de pile
obtenu.
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◻ Exercice 20 (Identités de Wald - II)
On considère des variables aléatoires à valeurs dansNmutuellement indépendantes𝑁,𝑋1, . . . ,𝑋𝑛, . . .
définies sur le même espace probabilisé (Ω,A ,P).

On suppose que les variables aléatoires (𝑋𝑖), 𝑖 ∈ N∗, suivent la même loi que𝑋 , où𝑋 est une variable
aléatoire réelle discrète.

On note 𝑌 la variable aléatoire définie par 𝑌 =
𝑁

∑
𝑖=1
𝑋𝑖 c’est-à-dire :

∀𝜔 ∈ Ω, 𝑌(𝜔) =
𝑁(𝜔)
∑
𝑖=1

𝑋𝑖(𝜔)

1) Montrer que 𝐺𝑌 = 𝐺𝑁 ○ 𝐺𝑋 sur [−1, 1] où 𝐺𝑌 ,𝐺𝑁 et 𝐺𝑋 sont les fonctions génératrices des
variables 𝑌, 𝑁 et 𝑋 .

2) Dans le cas où 𝑁 et 𝑋 ont des moment finis d’ordre 2, montrer que 𝑌 admet un moment fini
d’ordre 2 et exprimer E(𝑌) et V(𝑌) en fonction des espérances et variances de 𝑋 et 𝑁 .

◻ Exercice 21

Une urne contient 𝑛 boules numérotées (non bleues) de 1 à 𝑛 et 𝑘 boules bleues non numérotées. Les
boules sont tirées avec remise jusqu’à ce qu’une boule bleue soit tirée. Au cours de ces tirages, on
définit le nombre 𝑅 de répétitions de la manière suivante :

au début, 𝑅 = 0. Ensuite, on ajoute 1 à 𝑅 dès que l’on obtient une boule numérotée qui avait été déjà
tirée précédemment.

1) Déterminer les probabilités des événements suivants :

— 𝐴1 = : « la première boule tirée est la boule numéro 1 ».
— 𝐴2 = : « la première boule tirée est une boule portant un numéro strictement supérieur à

1 »
— 𝐴3 = « la première boule tirée est une boule bleue »

2) On note𝐴0 l’événement ”la boule numéro 1 n’est jamais tirée lors du jeu”. En utilisant la formule
des probabilités totales avec les événements précédents, montrer que P(𝐴0) = 𝑘

𝑘+1 .

3) On note 𝑋 le nombre de fois où l’on a tiré la boule 1 au cours du jeu. En utilisant un raisonne-
ment analogue à celui de la question précédente, montrer que E(𝑋) = 1

𝑘 .
4) On définit la variable aléatoire 𝑌 par :

⎧⎪⎪⎨⎪⎪⎩

Si 𝑋 ⩾ 1, alors 𝑌 = 𝑋 − 1
Si 𝑋 = 0, alors 𝑌 = 0

(𝑌 est donc le nombre de répétitions de la boule numérotée 1.)

Montrer que E(𝑌) = ∑
𝑚≥1
(𝑚 − 1)P(𝑋 =𝑚) puis que E(𝑌) = 1

𝑘(𝑘+1) .

Soit 𝑟 un entier naturel. On recherche la valeur minimale de 𝑘 (en fonction de 𝑛 et 𝑟 ) de manière à
ce que le nombre moyen 𝑡 de répétitions soit inférieur ou égal à 𝑟 .

5) Montrer que 𝑡 = 𝑛E(𝑌).

6) En déduire que la valeur minimale recherchée est 𝑘0 = ⌈
√

𝑛
𝑟 +

1
4 −

1
2⌉.

◻ Exercice 22 Soit 𝜀1, 𝜀2, . . . , 𝜀𝑛, . . . une suite de variables de Rademacher indépendantes telles
que :

pour tout 𝑛 ∈ N∗, P(𝜀𝑛 = +1) = P(𝜀𝑛 = −1) = 1/2.
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1) Calculer l’espérance E((𝜀1 + 𝜀2 +⋯ + 𝜀𝑛)2) en fonction de 𝑛.
2) Soit 𝑎 ∈ ]0, 1[ fixé.

a) Montrer l’inégalité P(∣𝜀1 + 𝜀2 +⋯ + 𝜀𝑛 ∣ ⩾ 𝑎.𝑛) ⩽ 1
𝑎2𝑛 .

b) Montrer que

P(∣𝜀1 + 𝜀2 +⋯ + 𝜀𝑛 ∣ ⩾ 𝑎𝑛) = 1
2𝑛

𝑛

∑
ℓ=0
(𝑛ℓ )1{∣2ℓ−𝑛∣≥𝑎.𝑛}

c) Montrer que lim
𝑛→+∞

1
2𝑛

𝑛

∑
ℓ=0
(𝑛ℓ )1{∣2ℓ−𝑛∣⩾𝑎𝑛} = 0.

3) Soit𝑁 une variable aléatoire suivant la loi de Poisson, de paramètre𝜃 > 0 telle que (𝑁, 𝜀1, 𝜀2, . . .)
sont mutuellement indépendantes. Calculer, en fonction de 𝜃 , l’espérance :

E
⎛
⎝
(
𝑁+1
∑
𝑛=1

𝜀𝑛)
2⎞
⎠

◻ Exercice 23 Lemmes de Borel-Cantelli :
Soit (𝐴𝑛)𝑛⩾1 une suite d’événements d’un espace probabilisé (Ω,A ,P). On note 𝑝𝑛 = P(𝐴𝑛). On note
𝐵 l’événement ⋂

𝑛≥1
( ⋃
𝑘≥𝑛

𝐴𝑘).

On rappelle que cet événement est en fait :
𝐵 = {𝜔 ∈ Ω ∣ 𝜔 appartient à une infinité des 𝐴𝑛}.

1) On suppose que la série ∑
𝑘⩾1

P(𝐴𝑘) converge. Montrer que P(𝐵) = 0.

2) On suppose que les événements (𝐴𝑛) sont indépendants et que la série ∑
𝑛⩾1

P(𝐴𝑛) est divergente.

a) Montrer que l’événement 𝐵 est égal à ⋃
𝑛≥1
( ⋂
𝑘≥𝑛

𝐴𝑘), où𝑀 désigne l’événement contraire de

l’événement𝑀 .

b) Exprimer P(
𝑚
⋂
𝑘=𝑛

𝐴𝑘) en fonction des 𝑝𝑘 .

c) Montrer que la série ∑
𝑘⩾1

ln(1 − 𝑝𝑘) est divergente.

d) En déduire que P(𝐵) = 1.

3) Soit 𝛼 un réel strictement positif et (𝑋𝑛)𝑛⩾1 une suite de variables aléatoires indépendantes
telles que pour tout 𝑛, 𝑋𝑛 suit la loi de Bernoulli de paramètre 1

𝑛𝛼 .

a) Montrer que lim
𝑛→+∞

E(𝑋𝑛) = 0.
b) On suppose que 0 < 𝛼 ⩽ 1.

Montrer qu’avec une probabilité égale à 1, l’ensemble {𝑛 ∣ 𝑋𝑛 = 1} contient une infinité
d’éléments.

c) On suppose que 𝛼 > 1.
Montrer qu’avec une probabilité égale à 1, l’ensemble {𝑛 ∣ 𝑋𝑛 = 1} est fini.

◻ Exercice 24

1) Soit (𝑋,𝑌) un couple de variables aléatoires définies sur un espace probabilisé (Ω,A ,P) à
valeurs dans N.
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2) a) Dire pourquoi pour tout (𝑥,𝑦) de [−1, 1]2, la famille

(P(𝑋 = 𝑛 ∩𝑌 =𝑚)𝑥𝑛𝑦𝑚)(𝑛,𝑚)∈N2

est sommable. On note𝐺(𝑋,𝑌)(𝑥,𝑦) sa somme.
b) Montrer que𝐺(𝑋,𝑌)(𝑥,𝑦) = E(𝑥𝑋𝑦𝑌 ).

On suppose désormais que pour tout (𝑥,𝑦) de [−1, 1]2,

𝐺(𝑋,𝑌)(𝑥,𝑦) =
𝑝𝑦

ln(1 − 𝑝)
× ln(1 − 𝑝𝑥𝑦)
1 − (1 − 𝑝)𝑦

où 𝑝 est un réel de ]0, 1[.
3) a) Déterminer𝐺𝑋 (𝑥) pour tout 𝑥 de [−1, 1].

b) En déduire la loi marginale de 𝑋 .
4) a) Vérifier que 𝑌 −𝑋 est presque sûrement à valeurs positives.

b) Montrer que les variables aléatoires 𝑋 et 𝑌 −𝑋 vérifient, pour tout (𝑥,𝑦) de [−1, 1]2 :
𝐺(𝑋,𝑌−𝑋)(𝑥,𝑦) =𝐺𝑋 (𝑥)𝐺𝑌−𝑋 (𝑦).

c) Déterminer la loi de 𝑌 −𝑋 .

◻ Exercice 25
1) Soit 𝑎 un réel strictement positif. Montrer qu’il existe une variable aléatoire réelle de variance

égale à 𝑎.

2) On suppose dans cette question que 𝑀 = (𝑎 𝑐
𝑐 𝑏
) est la matrice de variance-covariance d’un

couple de variables aléatoires discrètes réelles (𝑋,𝑌). Montrer que 𝑎 ⩾ 0, 𝑏 ⩾ 0 et 𝑎𝑏 − 𝑐2 ⩾ 0.

3) Réciproquement, on suppose que la matrice réelle𝑀 = (𝑎 𝑐
𝑐 𝑏
) vérifie 𝑎 ⩾ 0, 𝑏 ⩾ 0 et 𝑎𝑏 −𝑐2 ⩾ 0.

On suppose que 𝑎𝑏 = 0. Montrer que𝑀 est la matrice de variance-covariance d’un vecteur réel
(𝑋,𝑌).

4) On suppose que 𝑎𝑏 /= 0. On pose

𝜎1 =
√
𝑎, 𝜎2 =

√
𝑏, et 𝜌 = 𝑐√

𝑎𝑏

Soit (𝑈 ,𝑉 ) un couple de variables aléatoires discrètes, avec𝑈 et𝑉 indépendantes et possédant
chacune une variance égale à 1.

Montrer que (𝜎1𝑈 ,𝜎2𝜌𝑈 + 𝜎2
√
1 − 𝜌2𝑉 ) a pour matrice de variance-covariance𝑀 .

◻ Exercice 26

Toutes les variables aléatoires de cet exercice sont définies sur l’espace probabilisé (Ω,A ,P).

Soit𝑈 une variable aléatoire discrète, à valeurs dans N, admettant un moment d’ordre deux.

1) a) Démontrer la formule : E(𝑈 ) =
+∞
∑
𝑗=1

P(𝑈 ⩾ 𝑗).

b) Exprimer de même la somme
+∞
∑
𝑗=1

𝑗P(𝑈 ⩾ 𝑗) en fonction de E(𝑈 2) et E(𝑈 ).
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Soit (𝑋𝑛)𝑛∈N∗ une suite de variables aléatoires discrètes, à valeurs dans N, indépendantes, de même
loi.

On note pour tout 𝑘 ∈ N, 𝑝𝑘 = P(𝑋𝑛 = 𝑘) et 𝐹𝑘 =
𝑘

∑
𝑗=0
𝑝 𝑗 .

Pour tout 𝑛 ∈ N∗, on pose𝑀𝑛 = sup
1≤𝑖≤𝑛
(𝑋𝑖).

2) Calculer, pour tout 𝑘 ∈ N∗, la probabilité P(𝑀𝑛 ≤ 𝑘) en fonction de 𝐹𝑘 et 𝑛.
3) On suppose dans cette question que les variables𝑋𝑛 suivent la loi uniforme surN𝐾 = {1, 2, . . . , 𝐾},

où 𝐾 est un entier strictement supérieur à 1.
4) a) Calculer pour tout 𝑘 ∈ N𝐾 , la probabilité P(𝑀𝑛 = 𝑘).

b) On jette trois dés équilibrés ; quelle est la probabilité que le plus grand des chiffres obtenus
soit 4?

5) On suppose maintenant que les variables 𝑋𝑛 suivent la loi géométrique sur N∗ de paramètre 𝑝
(avec 0 < 𝑝 < 1) et on note 𝑞 = 1 − 𝑝 .

a) Calculer E(𝑀𝑛).
b) Trois joueurs jouent à Pile ou Face avec une pièce équilibrée et s’arrêtent dès qu’ils ont

obtenu un Pile. La variable aléatoire 𝑀3 est alors le nombre de jets effectués par le ou les
joueurs ayant obtenu Pile en dernier. Calculer E(𝑀3).

◻ Exercice 27

Dans tout l’exercice, 𝑋 est une variable aléatoire définie sur un espace probabilisé (Ω,A ,P) et sui-
vant la loi de Poisson de paramètre 𝜆 > 0.

1) a) Montrer que P(∣𝑋 − 𝜆∣ ⩾ 𝜆) ⩽ 1
𝜆 .

b) En déduire l’inégalité P(𝑋 ⩾ 2𝜆) ⩽ 1
𝜆 .

2) On considère dans toute cette question une variable aléatoire discrète 𝑍 définie sur (Ω,A ,P),
d’espérance nulle et de variance 𝜎2.

a) Montrer que
∀𝑎 > 0, ∀𝑥 ⩾ 0, P(𝑍 ⩾ 𝑎) ⩽ P( (𝑍 + 𝑥)2 ⩾ (𝑎 + 𝑥)2 )

b) Montrer que ∀𝑎 > 0, ∀𝑥 ⩾ 0, P(𝑍 ⩾ 𝑎) ⩽ 𝜎2+𝑥2
(𝑎+𝑥)2 .

c) Montrer que ∀𝑎 > 0, P(𝑍 ⩾ 𝑎) ⩽ 𝜎2

𝜎2+𝑎2 .

d) En déduire que P(𝑋 ⩾ 2𝜆) ⩽ 1
𝜆+1 .

3) Pour tout réel 𝑡 , on pose 𝐺𝑋 (𝑡) = ∑+∞𝑘=0 P(𝑋 = 𝑘)𝑡𝑘 .

a) Pour tout réel 𝑡 , justifier l’existence de𝐺𝑋 (𝑡) et calculer sa valeur.
b) Montrer que : ∀𝑡 ⩾ 1,∀𝑎 > 0, P(𝑋 ⩾ 𝑎) ⩽ 𝐺𝑋 (𝑡)

𝑡𝑎 .
c) En déduire que P(𝑋 ⩾ 2𝜆) ⩽ (𝑒4)𝜆 .

3 Exercices nécessitant plus d’inspiration

◻ Exercice 28 On note P l’ensemble des nombres premiers. Pour 𝑝 ∈ P et 𝑚 ∈ N∗, on note

𝛿𝑝(𝑚) =
⎧⎪⎪⎨⎪⎪⎩

1 si 𝑝 ∣𝑚
0 sinon

et 𝑔(𝑚) = ∑𝑝∈P 𝛿𝑝(𝑚) le nombre de diviseurs premiers de𝑚.
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Pour toute partie 𝐴 de N∗ on note P𝑛(𝐴) = 1
𝑛Card(𝐴 ∩ [[1, 𝑛]]). Pour toute application 𝑓 de N∗ vers

R, on note E𝑛(𝑓 ) et 𝑉𝑛(𝑓 ) l’espérance et la variance de la restriction de 𝑓 à [[1, 𝑛]] muni de la loi
uniforme.
On pose 𝑎𝑛 = E𝑛(𝑔) = 1

𝑛 ∑
𝑛
𝑘=1𝑔(𝑘).

1) Soient 𝑝1, . . . , 𝑝𝑘 des nombres premiers distincts. Montrer que 𝑒−∑
𝑘
𝑖=1 ln(1−

1
𝑝𝑖
) est la somme des

inverses des entiers dont les diviseurs premiers sont parmi {𝑝1, . . . , 𝑝𝑘}.

En déduire que la famille ( 1𝑝 )𝑝∈P n’est pas sommable.

2) Démontrer que 𝑎𝑛 →
𝑛→∞

∞.
3) Soient 𝑝,𝑞 des nombres premiers distincts. Démontrer que

E𝑛 ((𝛿𝑝 −
1
𝑛
⌊𝑛
𝑝
⌋) .(𝛿𝑞 −

1
𝑛
⌊𝑛
𝑞
⌋)) ⩽ 1

𝑛𝑝
+ 1
𝑛𝑞

4) En déduire que 𝑉𝑛(𝑔) ⩽ 3 ∑
𝑝∈P, 𝑝⩽𝑛

1
𝑝
.

5) Démontrer que pour tout 𝜀 > 0 : P𝑛 (∣
𝑔

𝑎𝑛
− 1∣ ⩾ 𝜀) →

𝑛→∞
0.

(c’est le théorème de Hardy-Ramanujan)
◻ Exercice 29 Soient 𝑝,𝑞, 𝑟 trois réels strictement positifs tels que 𝑝 + 𝑞 + 𝑟 = 1. On considère,
pour tout naturel 𝑛, une variable aléatoire 𝑌𝑛 = (𝑈𝑛,𝑉𝑛) à valeurs dans N2 suivant la loi trinomiale :

∀𝑘, ℓ ∈ N tels que 𝑘 + ℓ ⩽ 𝑛, P(𝑌𝑛 = (𝑘, ℓ)) =
𝑛!

𝑘!ℓ!(𝑛 − 𝑘 − ℓ)!
𝑝𝑘𝑞ℓ𝑟𝑛−𝑘−ℓ

On pose 𝑌0 = (0, 0)(variable constante)

1) Démontrer que𝑈𝑛 et 𝑉𝑛 suivent des lois binomiales dont on déterminera les paramètres.
2) Les variables𝑈𝑛 et 𝑉𝑛 sont-elles indépendantes?
3) Démontrer que

∀𝑥,𝑦 ∈ R,
𝑛

∑
𝑘=1

𝑘(𝑛
𝑘
)𝑥𝑘−1𝑦𝑛−𝑘 = 𝑛(𝑥 +𝑦)𝑛−1

et en déduire la moyenne de𝑈𝑛𝑉𝑛 .
4) Calculer la covariance de𝑈𝑛 et 𝑉𝑛 et la variance de𝑈𝑛 +𝑉𝑛 .
5) Soit 𝑁 une variable aléatoire à valeurs naturelles. On note 𝑎𝑛 = P(𝑁 = 𝑛). On suppose que la

famille constituée de 𝑁 et des 𝑌𝑛 est une famille de variables indépendantes.

On pose
∀𝜔 ∈ Ω, 𝑈 (𝜔) =𝑈𝑁(𝜔)(𝜔) 𝑉 (𝜔) =𝑉𝑁(𝜔)(𝜔)

et on pose 𝑌 = (𝑈 ,𝑉 ).

a) On suppose que 𝑁 suit une loi de Poisson de paramètre 𝜆 > 0. Calculer la loi de 𝑌 (on
introduira le système complet {𝑁 = 𝑛}𝑛∈N).

En déduire que𝑈 et 𝑉 sont indépendantes et identifier leur loi.
b) Dans les mêmes hypothèses, on pose pour tout (𝑎,𝑏) ∈ [0, 1]2, 𝐺𝑌 (𝑎,𝑏) = E(𝑎𝑈𝑏𝑉 ) (fonc-

tion génératrice de 𝑌 ).

Calculer𝐺𝑌 et en déduire les fonctions génératrices𝐺𝑈 et𝐺𝑉 de𝑈 et𝑉 . Retrouver les lois
de𝑈 et 𝑉 et l’indépendance de ces variables.

c) On suppose maintenant que 𝑁 suit une loi quelconque, mais que les variables𝑈 et𝑉 sont
indépendantes. Démontrer à l’aide de la fonction génératrice de 𝑌 que 𝑁 suit une loi de
Poisson.
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CHAPITRE 13

Espaces vectoriels normés II

1 Applications du cours

A Continuité

◻ Exercice 1 Dans chacun des cas suivants, étudier l’existence de la limite de 𝑓 en (0, 0) :

𝑎) 𝑓 (𝑥,𝑦) = (𝑥2 +𝑦2) sin( 1
𝑥2+𝑦2) 𝑏) 𝑓 (𝑥,𝑦) = 𝑥𝑦

𝑥2+𝑦2 𝑐) 𝑓 (𝑥,𝑦) = 𝑥(𝑥−𝑦)
𝑥2+𝑦2

𝑑) 𝑓 (𝑥,𝑦) = 𝑥𝑦2

𝑥4+𝑦2 𝑒) 𝑓 (𝑥,𝑦) = 𝑥2𝑦
𝑥4+𝑦2 𝑓 ) 𝑓 (𝑥,𝑦) = 𝑥3+𝑦3

𝑥2+𝑦2

𝑔) 𝑓 (𝑥,𝑦) = 𝑥
4
3𝑦

𝑥2+𝑥𝑦+𝑦2

◻ Exercice 2 Soit 𝜑 une fonction continue sur R. On considère la fonction 𝑓 ∶ R2 → R définie par

𝑓 ∶ (𝑥,𝑦)↦ ∫
𝑦

𝑥
𝜑(𝑡)d𝑡

Montrer que 𝑓 est continue sur R2.

◻ Exercice 3 Soit ∑𝑎𝑛𝑧𝑛 une série entière de rayon de convergence 𝑅 > 0. On note 𝐷 le disque
ouvert de centre (0, 0) et de rayon 𝑅 et 𝑓 la fonction définie sur 𝐷 par

𝑓 ∶ (𝑥,𝑦)↦
∞
∑
𝑛=0

𝑎𝑛(𝑥 + 𝑖𝑦)𝑛

Montrer que 𝑓 est continue sur 𝐷 .

B Ouverts, fermés, intérieur, adhérence, frontière

◻ Exercice 4 Montrer que {(𝑥,𝑦) ∈ R2 ; 𝑥2 + 3𝑦2 − 1 > 0} est un ouvert de R2.

◻ Exercice 5 Démontrer que si𝐴 est un ouvert dense et 𝐵 une partie dense d’un espace vectoriel
normé 𝐸, alors 𝐴 ∩ 𝐵 est dense dans 𝐸.
Cela reste t-il vrai si 𝐴 n’est pas supposé ouvert ?

◻ Exercice 6 Soit 𝐸 = C 0([0, 1];R) muni de ∥ ∥∞, 𝐴 = {𝑓 ∈ 𝐸;∀𝑥 ∈ [0, 1], 𝑓 (𝑥) ≠ 0}.
Déterminer

○
𝐴,
−
𝐴.
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◻ Exercice 7 SoientB leC-espace vectoriel des suites complexes bornées muni de la norme ∥.∥∞,
et 𝐴 l’ensemble des suites complexes à support fini, c’est-à-dire :

𝐴 = {(𝑢𝑛)𝑛∈N ∈ CN;∃𝑁 ∈ N,∀𝑛 ∈ N, (𝑛 ≥ 𝑁 ⇒ 𝑢𝑛 = 0)}

Déterminer
○
𝐴,
−
𝐴, 𝜕(𝐴).

◻ Exercice 8 Soit 𝐸 un K-espace vectoriel normé et 𝐴 une partie non vide de 𝐸.

Pour 𝑥 ∈ 𝐸, comparer 𝑑(𝑥,𝐴) et 𝑑(𝑥,
−
𝐴).

◻ Exercice 9 Soit 𝐸 le R-espace vectoriel des applications continues de [0, 1] dans R, muni de
∥ ∥∞ ; soit 𝐴 = {𝑓 ∈ 𝐸 ; 𝑓 (0) = 0 et ∫

1

0
𝑓 (𝑥) d𝑥 ⩾ 1}.

1) Montrer que 𝐴 est une partie fermée de 𝐸.
2) Montrer que pour tout 𝑓 dans 𝐴, ∥𝑓 ∥∞ > 1.
3) Calculer 𝑑(0,𝐴).
◻ Exercice 10 Soit 𝐸 un espace vectoriel normé, 𝐹 et 𝐺 deux supplémentaires.
Soit 𝑝 la projection sur 𝐹 de direction 𝐺 . On suppose que 𝑝 est continue. Montrer que 𝐹 et 𝐺 sont
fermés dans 𝐸.

◻ Exercice 11 Soit 𝐸 un espace vectoriel normé de dimension 𝑛 et (𝑎1, 𝑎2,⋯, 𝑎𝑛) ∈ 𝐸𝑛 . Montrer

que {𝑥 ∈ 𝐸/
𝑛

∏
𝑘=1
∥𝑥 − 𝑎𝑘∥ = 1} est un fermé de 𝐸.

C Densité

◻ Exercice 12 Soient 𝐸 et 𝐹 des espaces vectoriels normés réels. Soit 𝑓 ∶ 𝐸 Ð→ 𝐹 vérifiant :

∀ (𝑥,𝑦) ∈ 𝐸2 , 𝑓 (𝑥 +𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦)

Montrer que si 𝑓 est continue en 0𝐸 , alors 𝑓 est linéaire.

◻ Exercice 13
1) Soient 𝐴,𝐵,𝐶,𝐷 ∈M𝑛(K) telles que : 𝐶𝐷 = 𝐷𝐶 et 𝐷 ∈ GL𝑛(K).

Montrer que si𝑀 est la matrice définie par blocs :𝑀 = ( 𝐴 𝐵
𝐶 𝐷

),

alors det(𝑀) = det(𝐴𝐷 − 𝐵𝐶).
2) Montrer que c’est encore vrai si 𝐷 est non inversible, K étant R ou C.

◻ Exercice 14 Soient 𝐸 un K-espace vectoriel de dimension 𝑛, 𝑓 ,𝑔 deux endomorphismes de 𝐸.

1) On suppose que 𝑓 est un automorphisme de 𝐸 ; montrer que : 𝜒 𝑓 ○𝑔 =𝜒𝑔○𝑓 .
2) On ne suppose plus que 𝑓 est un automorphisme de 𝐸 ; montrer que : 𝜒 𝑓 ○𝑔 =𝜒𝑔○𝑓 .

D Compacité

◻ Exercice 15 Soit 𝐸 l’espace vectoriel des fonctions continues de [0, 1] dans R, muni de ∥ ∥∞,
norme de la convergence uniforme. Soit 𝜑 ∶ 𝐸 → 𝐸 la fonction définie par

𝜑 ∶ 𝑓 ↦ exp ○𝑓

Montrer que 𝜑 est continue.

◻ Exercice 16 Soit 𝐴 = {𝑥 ∈ R ; 𝑥2+1
𝑥 (sin𝑥).( ch𝑥) ⩽ 1}. La partie 𝐴 est-elle compact ?
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◻ Exercice 17 Soit 𝐴 et 𝐵 deux parties d’un espace vectoriel.
On note 𝐴 + 𝐵 l’ensemble {𝑎 +𝑏 ; (𝑎,𝑏) ∈ 𝐴 × 𝐵}.
1) Soit 𝐾 un compact et 𝐹 un fermé. Montrer que 𝐾 + 𝐹 est fermé.
2) Déterminer deux fermés 𝐹, 𝐹 ′ tels que la somme 𝐹 + 𝐹 ′ n’est pas fermée.

On pourra considérer 𝐹 = {−𝑛 , 𝑛 ⩾ 3} et 𝐹 ′ = {ℓ + 1
ℓ , ℓ ∈ N∗}.

3) Soit 𝐾 et 𝐿 deux compacts. Montrer que 𝐾 + 𝐿 est compact.
4) Soit 𝐾 et 𝐿 deux compacts. Montrer que la réunion des segments joignant un point de 𝐾 et un

point de 𝐿 est compact.

◻ Exercice 18 Soit 𝑓 ∶ R → R une fonction continue. Montrer que l’image réciproque de tout
compact est compact si et seulement si lim

±∞
∣𝑓 ∣ = +∞.

E Espaces vectoriels et algèbres de dimension finie

◻ Exercice 19 Soit 𝑓 ∶M𝑛(C)→M𝑛(C) définie par 𝑓 ∶𝑀 ↦𝑀2.

1) Montrer que 𝑓 est continue sur M𝑛(C).
2) Soit 𝐵 une partie bornée de M𝑛(C). Montrer que 𝑓 est lipschitzienne sur 𝐵.

◻ Exercice 20 Soient 𝐸, 𝐹 des espaces vectoriels normées, 𝐾 une partie compacte de 𝐸, 𝐿 une
partie de 𝐹 et 𝑓 ∶ 𝐾 → 𝐿 continue et bijective. Montrer que 𝑓 −1 est continue.

◻ Exercice 21 Soit K = R ou C.

Montrer que GL𝑛(K) est un ouvert dense de M𝑛(K). Montrer que SL𝑛(K) est un fermé de M𝑛(K),
non borné si 𝑛 ⩾ 2.

◻ Exercice 22 Montrer que 𝑂(𝑛) = {𝑀 ∈M𝑛(R) ; 𝑀⊺𝑀 = 𝐼𝑛} est un compact de M𝑛(R).

F Séries de matrices, exponentielles

◻ Exercice 23 Soit 𝐴 = 1
4

⎛
⎜
⎝

1 1 1
0 1 1
0 0 1

⎞
⎟
⎠
. Calculer exp(𝐴).

La matrice 𝐼 −𝐴 est-elle inversible ? Calculer son inverse en utilisant la somme d’une série.

◻ Exercice 24

Soit 𝐴 =
⎛
⎜⎜⎜
⎝

𝑎 𝑏 ⋯ 𝑏
𝑏 𝑎 ⋱ ⋮
⋮ ⋱ ⋱ 𝑏
𝑏 ⋯ 𝑏 𝑎

⎞
⎟⎟⎟
⎠
∈M𝑛(R) où 𝑎,𝑏 sont des réels. Calculer exp(𝐴).

◻ Exercice 25 Calculer exp(𝐴) dans les exemples suivants :

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
⋮ ⋱ 1
0 ⋯ ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
⋮ ⋱ 2 ⋱ ⋮
⋮ ⋱ ⋱ 0
⋮ ⋱ 𝑛 − 1
0 ⋯ ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
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◻ Exercice 26 Pour chacune des matrices𝑀 suivantes :

⎛
⎜
⎝

3 3 −3
−4 6 4
−7 3 7

⎞
⎟
⎠

,
⎛
⎜
⎝

3 1 1
−4 4 4
−1 1 5

⎞
⎟
⎠

,
⎛
⎜
⎝

5 1 −1
2 4 −2
3 1 1

⎞
⎟
⎠

Calculer exp(𝑡𝑀) pour 𝑡 réel.

◻ Exercice 27 Soit𝑀 une matrice carrée telle que𝑀2 = −𝑀 .

1) Justifier que les séries ∑
𝑘⩾0

𝑀2𝑘

(2𝑘)! et ∑
𝑘⩾0

𝑀2𝑘+1

(2𝑘+1)! convergent.

2) Que dire de
∞
∑
𝑘=0

𝑀2𝑘

(2𝑘)! −
∞
∑
𝑘=0

𝑀2𝑘+1

(2𝑘+1)!

◻ Exercice 28 Soit 𝐴 = ( 7 −3
3 1

) . Calculer exp(𝐴).

◻ Exercice 29 Soient 𝑎,𝑏, 𝑐 trois réels non tous nuls et𝑀 =
⎛
⎜
⎝

𝑏 − 𝑎 − 𝑐 2𝑏 2𝑏
2𝑐 𝑐 − 𝑎 −𝑏 2𝑐
2𝑎 2𝑎 𝑎 −𝑏 − 𝑐

⎞
⎟
⎠
.

1) Calculer𝑀𝑛 pour 𝑛 ∈ N ainsi que exp(𝑀).
2) Déterminer une condition nécéssaire et suffisante pour que 𝑀 soit inversible, calculer alors
𝑀−1

◻ Exercice 30 Soit 𝐴 =
⎛
⎜
⎝

−1 𝑎 𝑎
1 −1 0
−1 0 −1

⎞
⎟
⎠

1) Trouver 𝑉1,𝑉2,𝑉3 tels que :

𝐴𝑉1 = −𝑉1; 𝐴𝑉2 =𝑉1 −𝑉2; 𝐴𝑉3 =𝑉2 −𝑉3

2) Calculer 𝐴3

3) Calculer exp(𝑡𝐴) pour 𝑡 ∈ R.

G Continuité uniforme

◻ Exercice 31
1) Montrer que 𝑥 z→ 𝑥2 n’est pas uniformément continue sur R.
2) Même question avec 𝑥 z→ sin(𝑥2).
3) Montrer que 𝑥 z→

√
𝑥 est uniformément continue sur [0,+∞[.

2 Exercices plus élaborés

A Ouverts, fermés, intérieur, adhérence, frontière

◻ Exercice 32 Soit 𝑘 ∈ R+. Pour tout 𝑛 dans N∗, on pose

Ω𝑛 = {(𝑥,𝑦) ∈ R2 ; (𝑥 − 1
𝑛
)
2

+ (𝑦 − 1
𝑛
)
2

⩽ 𝑘
2

𝑛2
}

Soit Ω =
+∞
⋃
𝑛=1

Ω𝑛 . Déterminer une CNS sur 𝑘 pour que Ω soit une partie fermée de R2.
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◻ Exercice 33 Démontrer que si𝐴 est un ouvert et 𝐵 une partie quelconque d’un espace vectoriel
normé, alors 𝐴 + 𝐵 est un ouvert (où 𝐴 + 𝐵 = {𝑎 +𝑏, (𝑎,𝑏) ∈ 𝐴 × 𝐵})

◻ Exercice 34 Soit 𝐴 et 𝐵 deux fermés disjoints d’un espace vectoriel normé 𝐸. Montrer qu’il
existe𝑈 et 𝑉 des ouverts disjoints de 𝐸 tels que 𝐴 ⊂𝑈 et 𝐵 ⊂𝑉 .

On pourra utiliser les fonctions 𝑥 ↦ 𝑑(𝑥,𝐴) et 𝑦 ↦ 𝑑(𝑦, 𝐵).

B Densité

◻ Exercice 35 Soit 𝐹 un sous-espace vectoriel d’un espace vectoriel normé 𝐸. Prouver que

1) si 𝐹 ≠ 𝐸 alors 𝐹 est d’intérieur vide.
2) 𝐹 est un sous-espace vectoriel de 𝐸.
3) Si 𝐹 est un hyperplan de 𝐸, il est soit fermé, soit dense dans 𝐸.

◻ Exercice 36
1) Soit𝐺 soit sous-groupe de (R,+). Montrer qu’il est dense ou qu’il existe 𝑎 ∈ R+ tel que𝐺 = 𝑎Z.
2) Soit 𝑓 ∶ R → R continue. On suppose qu’il existe 𝑇1 > 0 et 𝑇2 > 0 telles que 𝑓 soit 𝑇1-périodique

et 𝑇2-périodique. Dans le cas où 𝑇1
𝑇2
∉ Q montrer que 𝑓 est constante.

◻ Exercice 37 Soit une suite (𝑎𝑛) telle que ∀𝑛 ∈ N∗, 𝑎𝑛 ∈ {0, 1}. Soit 𝐴𝑛 =
𝑛

∑
𝑘=1

𝑎𝑘
𝑛+𝑘 , 𝑛 ∈ N∗.

1) Que devient (𝐴𝑛) si (𝑎𝑛) est constante? stationnaire?

Que se passe-t-il si on modifie un nombre fini de 𝑎𝑛 ?
2) Montrer qu’il existe (𝑎𝑛) telle que (𝐴𝑛) diverge.

On note 𝐼 le plus petit intervalle contenant tous les termes de la suite (𝐴𝑛).
3) Soit ℓ un point intérieur de 𝐼 ; montrer qu’il existe 𝑛0 ∈ N∗ , 𝑛0 ⩾ ℓ−

1
2 , (𝑎1,⋯, 𝑎𝑛0) tels que

ℓ ⩽ 𝐴𝑛0 ⩽ ℓ + 1
2𝑛0

.

Peut-on dire que : ℓ ⩽ 𝐴𝑛0+1 ⩽ ℓ + 1
2(𝑛0+1) ?

◻ Exercice 38 Soient (𝑎𝑛) et (𝑏𝑛) deux suites réelles croissantes et non bornées, telles que :
lim

𝑛→+∞
𝑎𝑛+1 − 𝑎𝑛 = 0.

Montrer que {𝑎𝑛 −𝑏𝑚 ; (𝑛,𝑚) ∈ N2} est dense dans R.

C Compacité

◻ Exercice 39 On pose 𝐾0 = [0, 1], 𝐾1 = [0, 13] ∪ [
2
3 , 1] et pour tout entier 𝑛,

𝐾𝑛+1 = {𝑥 ∈ [0, 1] , 3𝑥 ∈ 𝐾𝑛 ou 3(1 − 𝑥) ∈ 𝐾𝑛}.

On pose alors 𝐾 = ⋂𝑛∈N𝐾𝑛 .
1) Expliciter 𝐾2 et 𝐾3 comme réunion d’intervalles puis 𝐾𝑛 .
2) Montrer que 𝐾 est un compact d’intérieur vide.

3) Montrer que tout élément de 𝐾 peut s’écrire sous la forme
+∞
∑
𝑛=1

𝑎𝑛
1
3𝑛 avec 𝑎𝑛 dans {0, 2}.

◻ Exercice 40 Soit 𝐾 un compact de R𝑛 et 𝑓 et 𝑔 deux fonctions lipschitziennes de 𝐾 dans R.
Montrer que 𝑓 𝑔 est lipschitzienne.

Donner un contre-exemple dans le cas où 𝐾 n’est pas compact.
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◻ Exercice 41 Soit 𝐾 un compact non vide de 𝐸, espace vectoriel normé, et soit 𝑓 une application
de 𝐾 dans 𝐾 telle que :

∀ (𝑥,𝑦) ∈ 𝐾 ×𝐾 , 𝑥 /= 𝑦 Ô⇒ ∥𝑓 (𝑥) − 𝑓 (𝑦)∥ < ∥𝑥 −𝑦∥

Démontrer que 𝑓 possède un unique point fixe.

On pourra utiliser pour l’existence l’application 𝑥 z→ ∥𝑓 (𝑥) − 𝑥∥.

◻ Exercice 42 Théorème de Carathéodory
Soit 𝐸 un R-espace vectoriel normé. On note ∥.∥ sa norme. On considère une partie 𝐻 de 𝐸.

On dit que 𝑥 ∈ 𝐸 est une combinaison convexe des 𝑝 éléments 𝑥1, . . . , 𝑥𝑝 ∈ 𝐸 s’il existe des réels
𝜆1, . . . , 𝜆𝑝 positifs ou nuls tels que

𝑥 =
𝑝

∑
𝑖=1
𝜆𝑖𝑥𝑖 et

𝑝

∑
𝑖=1
𝜆𝑖 = 1.

1) Montrer que l’ensemble Conv(H) des combinaisons convexes d’éléments de 𝐻 est convexe et
qu’il est inclus dans toute partie convexe de 𝐸 qui contient 𝐻 .

On appellera dans la suite enveloppe convexe de 𝐻 cette partie de 𝐸.

2) On suppose dans cette question que 𝐸 est de dimension finie et on note 𝑛 = dim𝐸. On souhaite
montrer que Conv(H) est l’ensemble des combinaisons convexes d’au plus 𝑛 + 1 éléments de 𝐻 .
On considère 𝑥 =

𝑝

∑
𝑖=1
𝜆𝑖𝑥𝑖 une combinaison convexe de 𝑥1, . . . , 𝑥𝑝 ∈ 𝐻 où 𝑝 ⩾ 𝑛 + 2.

a) En considérant la famille (𝑥2−𝑥1, 𝑥3−𝑥1, . . . , 𝑥𝑝 −𝑥1), montrer qu’il existe 𝑝 réels non tous
nuls 𝜇1, . . . , 𝜇𝑝 tels que

𝑝

∑
𝑖=1
𝜇𝑖𝑥𝑖 = 0 et

𝑝

∑
𝑖=1
𝜇𝑖 = 0.

b) En déduire que 𝑥 s’écrit comme combinaison convexe d’au plus 𝑝 − 1 éléments de 𝐻 et
conclure que Conv(H) est constituée des combinaisons convexes d’au plus 𝑛 + 1 éléments
de𝐻 . On pourra considérer une suite de coefficients de la forme 𝜆𝑖−𝜃𝜇𝑖 ⩾ 0, 𝑖 ∈ {1, 2, . . . , 𝑝}
pour un réel 𝜃 bien choisi.

3) a) Montrer que l’ensemble

Δ = {(𝑡1, . . . , 𝑡𝑛+1) ∈ R𝑛+1+ ,
𝑛+1
∑
𝑖=1
𝑡𝑖 = 1}

est une partie compacte de R𝑛+1.
b) En déduire que si 𝐸 est de dimension finie et si 𝐻 est compact alors Conv(H) est encore

compact.

◻ Exercice 43 Soit 𝐸 un espace vectoriel de dimension finie. Soit 𝐹 une partie fermée non vide de
𝐸 et 𝑥 ∈ 𝐸. Montrer qu’il existe 𝑥0 ∈ 𝐹 tel que 𝑑(𝑥, 𝐹) = ∥𝑥 − 𝑥0∥.

Donner un exemple où ce résultat n’est plus vrai dans le cas où 𝐸 n’est plus de dimension finie.

◻ Exercice 44 Soit (𝑢𝑛) une suite bornée de vecteurs d’un espace de dimension finie. Montrer
que l’ensemble des valeurs d’adhérence de cette suite est compact.
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D Espaces vectoriels et algèbres de dimension finie

◻ Exercice 45 Démontrer que l’ensemble des matrices diagonalisables de M𝑛(C) est dense

dans M𝑛(C).

◻ Exercice 46 Démontrer que l’ensemble des matrices diagonalisables deM2(R) n’est pas dense
dans M2(R).

◻ Exercice 47
1) Montrer que : ∀𝐴,𝐵 ∈M𝑛(C) , det(𝐴𝐵 + 𝐼𝑛) = det(𝐵𝐴 + 𝐼𝑛).
2) Montrer que : ∀𝐴 ∈M𝑛(C) , det(𝐴𝐴 + 𝐼𝑛) ∈ R
◻ Exercice 48 Soit 𝐸 un espace vectoriel de dimension finie.

1) Montrer que l’ensemble des projecteurs de est une partie fermée de L (𝐸).
2) Est-ce une partie compacte?
3) Que dire de l’ensemble des projecteurs orthogonaux d’un espace euclidien?

◻ Exercice 49
1) Montrer que𝑀 ↦ 𝜒𝑀 est une application continue de M𝑛(K) dans K[𝑋 ].
2) Montrer que𝑀 ↦ 𝜇𝑀 n’est pas continue où 𝜇𝑀 désigne le polynôme minimal de la matrice𝑀 .

E Continuité uniforme

◻ Exercice 50 Soit une fonction 𝑓 définie sur R à valeurs dans R, et uniformément continue sur
R.

On suppose que : pour tout 𝑥 > 0, la suite (𝑓 (𝑛𝑥)) converge. Que dire de 𝑓 ?

On pourra commencer par montrer que lim
𝑛→∞

𝑓 (𝑛𝑥) est la même pour tous les rationnels 𝑥

◻ Exercice 51 Soit 𝑓 ∶ 𝐼 ⊂ R z→ R , 𝑓 uniformément continue sur 𝐼 . Soit 𝑎 une extrémité finie
de l’intervalle 𝐼 qui ne soit pas dans 𝐼 . Montrer qu’on peut prolonger 𝑓 par continuité au point 𝑎.

On obtient ainsi une application 𝑓 ∶ 𝐼 ∪ {𝑎} z→ R. Montrer que 𝑓 est uniformément continue.

◻ Exercice 52 Soit 𝑓 ∶ R Ð→ R uniformément continue sur R. Montrer qu’il existe (𝛼, 𝛽) ∈
]0,+∞[2 tels que : ∀ 𝑥 ∈ R , ∣𝑓 (𝑥)∣ ⩽ 𝛼 ∣𝑥 ∣ + 𝛽 .

◻ Exercice 53 Soit 𝑓 ∶ [0,+∞[Ð→ R continue et ayant une limite finie en +∞. Montrer que 𝑓
est uniformément continue sur [0,+∞[.

F Séries de matrices, exponentielle

◻ Exercice 54 Soit 𝐴 =
⎛
⎜
⎝

0 𝑟 −𝑞
−𝑟 0 𝑝
𝑞 −𝑝 0

⎞
⎟
⎠
, (𝑝,𝑞, 𝑟) ∈ R3. Calculer exp(𝑡𝐴) pour 𝑡 réel.

◻ Exercice 55 Soit 𝜆 ≠ 0 et 𝑛 ∈ N. Soit 𝑁 ∈M𝑛(C) nilpotente. Montrer qu’il existe 𝐵 ∈M𝑛(C)
telle que exp(𝐵) = 𝜆𝐼𝑛 +𝑁 .

On pourra poser 𝑃 = ∑𝑛−1𝑘=0
𝑋𝑘

𝑘! et𝑄 = ∑𝑛−1𝑘=1(−1)𝑘−1
𝑋𝑘

𝑘 et montrer que 𝑃 ○𝑄 − (1+𝑋) est divisible par 𝑋𝑛
en raisonnant à l’aide de développements limités.
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G Connexité par arcs

◻ Exercice 56
1) Le groupe 𝑂(3) est-il connexe par arcs?
2) Montrer que 𝑆𝑂(3) est connexe par arcs.

3 Exercices nécessitant plus d’inspiration

◻ Exercice 57 Soit 𝐸 = C ([0, 1],R), 𝐹 un sous-espace vectoriel de 𝐸 tel qu’il existe une constante
𝑐 > 0 telle que :

∀𝑓 ∈ 𝐹 , sup
𝑥∈[0,1]

∣𝑓 (𝑥)∣ ⩽ 𝑐 (∫
1

0
𝑓 (𝑡)2 d𝑡)

1
2

Montrer que 𝐹 est de dimension finie, et que dim(𝐹) ⩽ 𝑐2.

On pourra considérer, pour une famille orthonormale finie (𝑓1, . . . , 𝑓𝑛) de vecteurs de 𝐹 et pour un réel
𝑠 fixé, la fonction 𝑡 ↦ ∑𝑛𝑖=1 𝑓𝑖(𝑠)𝑓𝑖(𝑡).

◻ Exercice 58
1) L’ensemble GL𝑛(R) est-il connexe par arcs?
2) a) Soit𝑀 ∈ GL𝑛(R). Montrer que𝑀 peut s’écrire comme un produit de matrices de la forme

𝐼𝑛 + 𝜆𝐸𝑖, 𝑗 (𝑖 /= 𝑗 ) ou 𝐼𝑛 + 𝛼𝐸𝑖,𝑖 (𝛼 ≠ −1).
b) En déduire que GL+𝑛 (R) = {𝑀 ∈𝐺𝐿𝑛(R)/det(𝑀) > 0} est connexe par arcs.

3) L’ensemble GL𝑛(C) est-il connexe par arcs?
◻ Exercice 59 Soit 𝐸 un espace euclidien, et 𝑢 une isométrie vectorielle de 𝐸. Soit 𝑥 un vecteur
quelconque de 𝐸.

On définit la suite (𝑥𝑛)𝑛∈N de 𝐸 par :

{ 𝑥0 = 𝑥∀𝑛 ∈ N , 𝑥𝑛+1 = 𝑢(𝑥𝑛)

Montrer que 𝑥 est valeur d’adhérence de la suite (𝑥𝑛)

◻ Exercice 60 Soit 𝐸 = C ([0, 1],R) ; pour tout 𝜑 de 𝐸, on définit 𝑁𝜑 sur 𝐸 par :

∀ 𝑓 ∈ 𝐸 , 𝑁𝜑(𝑓 ) = ∫
1

0
∣𝜑(𝑡)𝑓 (𝑡)∣ d𝑡

1) Déterminer une condition nécessaire et suffisante sur 𝜑 pour que 𝑁𝜑 soit une norme sur 𝐸.
2) Déterminer une condition nécessaire et suffisante sur𝜑 pour que 𝑁𝜑 et 𝑁1 (norme de la conver-

gence en moyenne sur 𝐸) soient équivalentes.
3) Soient (𝜑,𝜓) ∈ 𝐸2 ; déterminer une condition nécessaire et suffisante sur 𝜑 et𝜓 pour que 𝑁𝜑 et
𝑁𝜓 soient équivalentes.

47



CHAPITRE 14

Espaces préhilbertiens II

1 Applications du cours

A Endomorphismes symétriques, matrices symétriques réelles

◻ Exercice 1 Soit𝑀 ∈M𝑛(R) telle que : ∃𝑎 ∈ R∗ vérifiant :𝑀⊺ =𝑀−1 + 𝑎𝐼𝑛 .
1) Montrer que𝑀 est diagonalisable.
2) Déterminer un polynôme annulateur de𝑀 .

◻ Exercice 2 Soit 𝑆 une matrice symétrique de M𝑛 (R). Montrer qu’il existe (𝜆1, ..., 𝜆𝑛) dans R𝑛
et (𝑈1, ...,𝑈𝑛) dans (M𝑛,1 (R))𝑛 tels que

∀𝑘, ℓ ∈ [[1, 𝑛]] 𝑈 ⊺𝑘 𝑈ℓ = 𝛿𝑘𝑙 et 𝑆 =
𝑛

∑
𝑘=1

𝜆𝑘𝑈𝑘𝑈
⊺
𝑘 .

◻ Exercice 3 Soit 𝑆 = (𝑠𝑖 𝑗) ∈M𝑛(R) une matrice symétrique, 𝜆1,⋯, 𝜆𝑛 les valeurs propres de 𝑆 ;
montrer que :

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
𝑠2𝑖 𝑗 =

𝑛

∑
𝑖=1
𝜆2𝑖

◻ Exercice 4 Soit 𝐴 ∈M𝑛(R), 𝑆 = 1
2(𝐴 +𝐴⊺), 𝛼 (respectivement 𝛽) la plus petite (respectivement

la plus grande) valeur propre de 𝑆 ; soit 𝜆 une valeur propre réelle de 𝐴. Montrer que 𝛼 ⩽ 𝜆 ⩽ 𝛽 . On
pourra considérer 𝑋⊺𝑆𝑋 pour 𝑋 ∈M𝑛1(R).

Application : Si 𝐴 ∈M𝑛(R), 𝐴 antisymétrique, alors SpR(𝐴) ⊂ {0}.

◻ Exercice 5 Soit 𝑆 ∈ M𝑛(R) une matrice symétrique, 𝜆1,⋯, 𝜆𝑛 les valeurs propres de 𝑆 (non
nécessairement distinctes) ; montrer que :

sup
1⩽𝑖⩽𝑛
∣𝜆𝑖 ∣ = sup

𝑋∈R𝑛 , ∥𝑋∥=1
∥𝑆𝑋∥

où ∥ ∥ désigne la norme euclidienne usuelle sur R𝑛 .

◻ Exercice 6 Soit 𝐴 ∈M𝑛(R) telle que 𝐴3 +𝐴2 +𝐴 = 0 ; montrer que si 𝐴 est symétrique, alors
𝐴 = 0.
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◻ Exercice 7 Soit 𝑎 un réel, et 𝑓 (∶ (𝑥,𝑦)↦ 𝑥2 + 2𝑎𝑥𝑦 +𝑦2
𝑥2 +𝑦2

. Déterminer sup
(𝑥,𝑦)∈R2/{(0,0)}

𝑓 (𝑥,𝑦)

◻ Exercice 8 Soit 𝐴 ∈M𝑛(R) vérifiant : 𝐴𝐴⊺𝐴 = 𝐼𝑛 .
1) Montrer que 𝐴 est inversible.
2) Montrer que 𝐴−1 est symétrique, de même que 𝐴.
3) Déterminer 𝐴, déterminer toutes les solutions de l’équation.

◻ Exercice 9 Soit 𝐸 un espace euclidien, 𝑝 et 𝑞 deux projecteurs orthogonaux.
Montrer que l’endomorphisme 𝑝 ○𝑞 ○ 𝑝 est diagonalisable, et que son spectre est inclus dans [0, 1].

◻ Exercice 10 On donne 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Montrer que 𝐴 est diagonalisable, et la diagonaliser par le groupe orthogonal𝑂(5).

◻ Exercice 11 Soit 𝐸 = R𝑛[𝑋 ]. Pour 𝑃,𝑄 dans 𝐸 on pose

(𝑃 ∣𝑄) = ∫
1

0
𝑃(𝑡)𝑄(𝑡)d𝑡

On considère aussi 𝜑 ∶ 𝐸 → 𝐸 définie par 𝜑 ∶ 𝑃 ↦ (2𝑋 − 1)𝑃 ′ +𝑋(𝑋 − 1)𝑃 ′′.

1) Montrer que ( ∣ ) est un produit scalaire et que 𝜑 est un endomorphisme de 𝐸.
2) Montrer que 𝜑 est diagonalisable.
3) Soient 𝜆, 𝜇 deux valeurs propres distinctes de 𝜑 , et 𝑃,𝑄 ∈ 𝐸 tels que 𝜑(𝑃) = 𝜆𝑃 et 𝜑(𝑄) = 𝜇𝑄

Montrer que (𝑃 ∣𝑄) = 0.

◻ Exercice 12 Soient𝐴 et𝐵 deuxmatrices colonnes réelles à𝑛 lignes linéairement indépendantes..
On pose𝑀 = 𝐴𝐵⊺ + 𝐵𝐴⊺

1) Montrer que𝑀 est diagonalisable.
2) Montrer que si 𝑛 > 2, 0 est valeur propre de𝑀 , et que l’espace propre associé est l’orthogonal

de Vect (𝐴,𝐵)
3) Déterminer les autres valeurs propres et les espaces propres associés.
4) Soit 𝑝 ∈ N∗. Montrer que𝑀𝑝 est combinaison linéaire de𝑀 et𝑀2 .

◻ Exercice 13 Soit 𝐸 =M𝑛(R) muni du produit scalaire naturel :

∀ (𝑋,𝑌) ∈M𝑛(R)2 , (𝑋 ∣𝑌) = tr(𝑋⊺𝑌)

Soient 𝐴,𝐵 ∈M𝑛(R) telles que (𝐴,𝐵) soit libre.

On définit 𝑓 ∶ 𝐸 → 𝐸 par 𝑓 ∶𝑀 ↦ (𝐴∣𝑀)𝐵 + (𝐵∣𝑀)𝐴.

1) La fonction 𝑓 appartient-elle à GL(𝐸)?
2) La fonction 𝑓 est-elle diagonalisable?

Déterminer ses éléments propres.

◻ Exercice 14 Soit 𝐸 un espace euclidien de dimension 𝑛 ⩾ 2.

Soient (𝑢, 𝑣) une famille libre de 𝐸, soit 𝑓 l’application de 𝐸 dans 𝐸 définie par :

𝑓 ∶ 𝑥 z→ (𝑢∣𝑥)𝑣 − (𝑣 ∣𝑥)𝑢
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1) Montrer que 𝑓 est un endomorphisme de 𝐸.
2) Montrer qu’il existe une base de 𝐸 dans laquelle la représentation matricielle de 𝑓 admet 𝑛 − 2

colonnes nulles.
3) Déterminer les éléments propres de 𝑓 . L’endomorphisme 𝑓 est-il diagonalisable?
4) Déterminer l’adjoint de 𝑓 .

◻ Exercice 15 Soit 𝐸 = R𝑛[𝑋 ] muni du produit scalaire :

∀(𝑃,𝑄) ∈ R𝑛[𝑋 ]2 , (𝑃 ∣𝑄) = ∫
1

−1
𝑃(𝑡)𝑄(𝑡) d𝑡

Montrer que l’application 𝜑 ∶ 𝑃 ↦ 2𝑋𝑃 ′ + (𝑋 2 − 1)𝑃 ′′ est un endomorphisme autoadjoint de 𝐸.

◻ Exercice 16 Déterminer les éléments propres de 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 ⋯ ⋯ 1
1 1 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
1 0 ⋯ 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

◻ Exercice 17 Soit𝑀 =
⎛
⎜⎜⎜
⎝

1 ⋯ 1 0
⋮ ⋮ ⋮
1 ⋯ 1 0
0 ⋯ 0 1

⎞
⎟⎟⎟
⎠
∈M𝑛(R).

1) Déterminer le rang et le noyau de𝑀 .
2) Déterminer les éléments propres de𝑀 .
3) Etudier la diagonalisabilité de𝑀 .
4) Déterminer la nature de l’endomorphisme canoniquement associé.

◻ Exercice 18 Soit𝑢 un endomorphisme symétrique d’une espace vectoriel euclidien 𝐸 vérifiant :

∀𝑥 ∈ 𝐸 , (𝑥 ∣𝑢(𝑥)) = 0

Montrer que 𝑢 est l’endomorphisme nul.

◻ Exercice 19 Soit 𝐸 = R𝑛[𝑋 ]. Pour 𝑃,𝑄 ∈ R𝑛[𝑋 ], on pose (𝑃 ∣𝑄) = ∫
1

−1
𝑃(𝑡)𝑄(𝑡)

√
1 + 𝑡
1 − 𝑡

d𝑡 .

1) Montrer que ( ∣ ) est un produit scalaire sur 𝐸.
2) Montrer que : 𝜑 ∶ 𝑃 Ð→ (𝑋 2 − 1)𝑃 ′′ + (2𝑋 + 1)𝑃 ′ est un endomorphisme autoadjoint de 𝐸.
3) Valeur propres et diagonalisabilité de 𝜑 .

2 Exercices plus élaborés

A Endomorphismes autoadjoint, matrices symétriques réelles

◻ Exercice 20 Soit 𝐴 appartenant à M𝑛(R) et antisymétrique. Montrer que 𝐴 + 𝐼𝑛 est inversible.

◻ Exercice 21 On pose 𝐸 = R𝑛 [𝑋 ]. Il est muni du produit scalaire : (𝐴∣𝐵) = ∫
1

0
𝐴 (𝑡)𝐵 (𝑡) d𝑡

Soit 𝑢 l’application qui à 𝑃 ∈ 𝐸 associe le polynôme 𝑄 = 𝑢 (𝑃) défini par :
∀𝑥 ∈ R 𝑄 (𝑥) = ∫

1

0
(𝑥 + 𝑡)𝑛 𝑃 (𝑡) d𝑡

1) Montrer que 𝑢 est symétrique et bijectif.
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2) Soient 𝜆0, 𝜆1, . . . , 𝜆𝑛 les valeurs propres de 𝑢 et (𝑃0, 𝑃1, . . . , 𝑃𝑛) une base orthonormale de 𝐸 for-
mée de vecteurs propres de 𝑢 .

Montrer que : ∀ (𝑥,𝑦) ∈ R2 (𝑥 +𝑦)𝑛 =
𝑛

∑
𝑘=0

𝜆𝑘𝑃𝑘 (𝑥)𝑃𝑘 (𝑦)

Déterminer tr (𝑢)
3) Calculer tr (𝑢2).
◻ Exercice 22 Soit 𝐴 une matrice de 𝑆𝑝(R), inversible.
On définit la suite 𝐴𝑛 par : 𝐴0 = 𝐴, et la relation de récurrence :

∀𝑛 ∈ N, 𝐴𝑛+1 =
1
2
(𝐴𝑛 +𝐴−1𝑛 )

Montrer que la suite (𝐴𝑛) est bien définie, et déterminer sa limite

◻ Exercice 23 Soit 𝑛 ∈ N∗, (𝐴𝑘) une suite de 𝑆𝑛(R)

1) Montrer que : ∀𝑘 ∈ N, 𝐼𝑛 +𝐴2
𝑘 ∈ GL𝑛(R).

2) On note, pour 𝑘 ∈ N, 𝐵𝑘 = (𝐼𝑛 +𝐴2
𝑘)−1𝐴𝑘 . On suppose que la suite (𝐵𝑘) converge vers 0 et que

la suite (𝐴𝑘) est bornée. Montrer que (𝐴𝑘) converge vers 0.

B Endomorphismes symétriques positifs, matrices symétriques réelles po-
sitives

◻ Exercice 24 Soit𝑀 une matrice de M𝑛,𝑝(R).
1) Montrer que𝑀⊺𝑀 ∈ 𝑆+𝑝 (R).
2) Justifier que 𝑀⊺𝑀 ∈ 𝑆++𝑝 (R) si et seulement si Ker(𝑀) = {0}. Dans l’affirmative, en déduire

une inégalité entre 𝑛 et 𝑝 .

◻ Exercice 25 Soit 𝐴 = ( 𝑎 𝑏
𝑏 𝑑

). Pour quelles valeurs de 𝑎,𝑏 et 𝑑 la matrice 𝐴 appartient-elle à

𝑆+2 (R)? à 𝑆++2 (R)?

◻ Exercice 26 Soit 𝐸 un espace euclidien, 𝑢 et 𝑣 des endomorphismes de 𝐸, On suppose que 𝑢 est
symétrique défini positif.

Montrer qu’il existe un unique endomorphisme𝑤 de 𝐸 tel que : 𝑢 ○𝑤 +𝑤 ○𝑢 = 𝑣 .

On pourra au choix, considérer l’endomorphisme 𝑓 de L (𝐸) défini par 𝑓 ∶ 𝑢 ↦ 𝑢○𝑤+𝑤 ○𝑢 ou travailler
matriciellement.

◻ Exercice 27 Soit 𝐸 un espace euclidien de dimension 𝑛 et 𝑢 un vecteur de 𝐸, on définit 𝑓𝑢 par :
∀ 𝑥 ∈ 𝐸 , 𝑓𝑢(𝑥) = (𝑢∣𝑥)𝑢.

Soit 𝑓 ∈ L (𝐸). Montrer que 𝑓 ∈ 𝑆+(𝐸) si et seulement si il existe une famille (𝑢1,⋯,𝑢𝑛) de 𝐸 telle

que 𝑓 =
𝑛

∑
𝑖=1
𝑓𝑢𝑖 .

◻ Exercice 28
1) Soit 𝐴 ∈ 𝑆++𝑛 (R). Montrer qu’il existe 𝑃 ∈ GL𝑛(R) telle que 𝐴 = 𝑃⊺𝑃 .
2) Soient 𝐴,𝐵 ∈ 𝑆+𝑛 (R). On suppose que : ∀𝑋 ∈ R𝑛 , 𝑋⊺𝐴𝑋 ⩽ 𝑋⊺𝐵𝑋 .

Montrer que det(𝐴) ⩽ det(𝐵).
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◻ Exercice 29 Pour 𝐴,𝐵 ∈M𝑛(R) on pose (𝐴∣𝐵) = tr(𝐴⊺𝐵) et ∥𝐴∥ =
√
(𝐴∣𝐴) (produit scalaire et

norme de Schur). On se propose de montrer que la norme de Schur est sous-multiplicative, c’est-à-
dire vérifie ∀𝐴,𝐵 ∈M𝑛(R), ∥𝐴𝐵∥ ⩽ ∥𝐴∥.∥𝐵∥.

1) Montrer que ∥𝐴𝐵∥2 = tr(𝐴⊺𝐴𝐵𝐵⊺)
2) Que dire des matrices 𝐴⊺𝐴 et 𝐵𝐵⊺ ?
3) Première méthode : Commencer par traiter le cas où 𝐴⊺𝐴 est diagonale, puis s’y ramener.
4) Seconde méthode : interpréter tr(𝐴⊺𝐴𝐵𝐵⊺) comme un produit scalaire, le majorer, et comparer
∥𝐴⊺𝐴∥ à ∥𝐴∥2 (et ∥𝐵𝐵⊺∥ à ∥𝐵∥2).

◻ Exercice 30 Soit 𝐸 un espace euclidien, 𝑢 ∈ 𝑆++(𝐸).
1) On pose 𝑆 = {𝑥 ∈ 𝐸 ; ∥𝑥∥ = 1}. Déterminer : min

𝑥∈𝑆
(𝑢(𝑥)∣𝑥)(𝑢−1(𝑥)∣𝑥).

2) En quels vecteurs de 𝑆 ce minimum est-il atteint ?
◻ Exercice 31 Soit 𝑛 un entier naturel non nul. Soit 𝑆 ∈ 𝑆+𝑛 (R) et Ω ∈𝑂(𝑛).
Démontrer que : ∣tr(𝑆Ω)∣ ⩽ tr(𝑆).

◻ Exercice 32 Soient 𝐴 et 𝐵 dans 𝑆+𝑛 (R). On dit que 𝐴 et 𝐵 sont congruentes si et seulement s’il
existe une matrice inversible 𝑃 ∈ GL𝑛(R) telle que 𝐴 = 𝑃⊺𝐵𝑃 .

Montrer que 𝐴 et 𝐵 sont congruentes si et seulement si elles ont même rang.

◻ Exercice 33 (Matrice de Hilbert I)
Soit 𝑓 ∈ C ([𝑎,𝑏],R+) (𝑎,𝑏 ∈ R, 𝑎 < 𝑏) non nulle. Démontrer que la matrice de M𝑛(R) de terme

général ∫
𝑏

𝑎
𝑡 𝑖+𝑗 𝑓 (𝑡) d𝑡 est dans 𝑆++𝑛 (R).

Application : prouver que ( 1
𝑖 + 𝑗 + 1

)
0⩽𝑖⩽𝑛−1,0⩽ 𝑗⩽𝑛−1

est dans 𝑆++𝑛 (R).

◻ Exercice 34 (Matrice de Hilbert II) Soit 𝐻 ∈M𝑛(R)de coefficients d’indice (𝑖, 𝑗) valant 1
𝑖+𝑗−1 .

1) Montrer que 𝐻 ∈ 𝑆++𝑛 (R).

2) Montrer que si 𝑃 ∈ R[𝑋 ], ∫
1

−1
𝑃(𝑥) d𝑥 = −𝑖 ∫

𝜋

0
𝑃 (𝑒𝑖𝜃)𝑒𝑖𝜃 d𝜃 .

3) En déduire que si (𝑥1,⋯, 𝑥𝑛) ∈ R𝑛 :
𝑛

∑
𝑘=1

𝑛

∑
𝑗=1

𝑥𝑘𝑥 𝑗
𝑗+𝑘−1 ⩽ 𝜋

𝑛

∑
𝑘=1

𝑥2𝑘 .

4) Montrer que la plus grande valeur propre de 𝐻 est inférieur ou égale à 𝜋 .
◻ Exercice 35 (Racine carrée dans 𝑆+𝑛 (R)).
Montrer que pour tout 𝑆 ∈ 𝑆+𝑛 (R), il existe une unique matrice 𝑅 ∈ 𝑆+𝑛 (R) telle que 𝑆 = 𝑅2.

◻ Exercice 36 (Décomposition polaire dans GL𝑛(R))
Soit 𝐴 ∈ GL𝑛(R).

On cherche à écrire 𝐴 sous la forme 𝐴 =𝑈𝑆 où (𝑈 ,𝑆) ∈𝑂(𝑛) × 𝑆++𝑛 (R).

1) Montrer qu’il existe une unique décomposition. On procédera par analyse-synthèse en utilisant
l’exercice précédent.

2) Soit 𝐴 =
⎛
⎜
⎝

1 2 1
−2 −1 −1
−1 −1 −2

⎞
⎟
⎠
. Déterminer la décomposition polaire de 𝐴.

◻ Exercice 37 (Décomposition polaire dans M𝑛(R))
Soit 𝐴 ∈M𝑛(R)

On cherche à écrire 𝐴 sous la forme 𝐴 =𝑈𝑆 où (𝑈 ,𝑆) ∈𝑂(𝑛) × 𝑆+𝑛 (R).
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1) Montrer que 𝑂(𝑛) est un compact.
2) Montrer que 𝑆+𝑛 (R) est un fermé de M𝑛(R)
3) Montrer que GL𝑛(R) est dense dans M𝑛(R)
4) En déduire qu’il existe (𝑈 ,𝑆) ∈𝑂(𝑛) × 𝑆+𝑛 (R) tels que 𝐴 =𝑈𝑆

◻ Exercice 38 (Décomposition polaire dans M𝑛(R) - bis)
Soit 𝐴 ∈M𝑛(R). Soit 𝑟 son rang.

1) Montrer qu’il existe des matrices orthogonales 𝑃,𝑄 ∈ 𝑂(𝑛,R) et une matrice inversible 𝐵 ∈

GL(𝑟,R) telles que 𝐴 =𝑄𝐴′𝑃−1 avec 𝐴′ = (𝐵 0
0 0
).

2) Soit (𝑉 , Σ) ∈𝑂(𝑟,R) × 𝑆++𝑟 tels que 𝐵 =𝑉 Σ.

Déterminer les éléments𝑈 ′ = (𝑈1 𝑈2

𝑈3 𝑈4
) ∈𝑂(𝑛,R) tels que 𝐴′ =𝑈 ′ (Σ 0

0 0
).

3) En déduire tous les couples (𝑈 ,𝑆) ∈𝑂(𝑛,R) × S+𝑛 tels que 𝐴 =𝑈𝑆 .

◻ Exercice 39 (Décomposition de Choleski)
1) Montrer que l’ensemble T ++

𝑛 des matrices de M𝑛(R), triangulaires supérieures, à éléments
diagonaux strictement positifs, est un sous-groupe de GL𝑛(R).

2) Soit 𝑆 ∈M𝑛(R), symétrique définie positive.
a) Montrer que (𝑋,𝑌)↦ 𝑋⊺𝑆𝑌 est un produit scalaire sur M𝑛,1(R).
b) Montrer qu’il existe une unique matrice 𝑇 ∈ T ++

𝑛 telle que 𝑆 =𝑇 ⊺𝑇

On pourra orthonormaliser la base canonique pour ce produit scalaire

3) Comment se généralise le résultat précédent lorsque 𝑆 est simplement symétrique positive?
4) Application : soit 𝑆 = (𝑠𝑖, 𝑗) ∈M𝑛(R), symétrique positive ; établir :

det𝑆 ≤
𝑛

∏
𝑘=1

𝑠𝑘,𝑘 .

En déduire, pour 𝐴 = (𝑎𝑖, 𝑗) ∈M𝑛(R) : det𝐴 ≤
𝑛

∏
𝑗=1
(
𝑛

∑
𝑖=1
𝑎2𝑖, 𝑗)

1/2

.

◻ Exercice 40 Soit 𝐸 un R−espace vectoriel euclidien de dimension 𝑛 ⩾ 1, soit 𝑢 un endomor-
phisme symétrique de 𝐸.

1) Si 𝑝 est un entier naturel impair, montrer qu’il existe un unique endomorphisme symétrique 𝑣
de 𝐸 tel que 𝑣𝑝 = 𝑢.

2) Si 𝑝 est un entier naturel pair, a-t-on le même résultat ? conclure.

Qu’en est-il si 𝑢 ∈ 𝑆+(𝐸)? si 𝑢, 𝑣 ∈ 𝑆+(𝐸)?

3 Exercices nécessitant plus d’inspiration

◻ Exercice 41 Soit 𝐴,𝐵 ∈S +
𝑛 (R). On veut montrer que det(𝐴) + det(𝐵) ⩽ det(𝐴 + 𝐵).

1) Démontrer la propriété quand 𝐴 ∈S ++
𝑛 (R).

On pourra utiliser la racine carrée de 𝐴 dans S ++
𝑛 .

2) En déduire le résultat annoncé.
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3) Reprendre la question 1) de l’exercice en vérifiant que 𝑀 ↦ 𝐴−1𝐵𝑀 est un endomorphisme
autoadjoint de M𝑛(R) muni t’un produit scalaire judicieux.

◻ Exercice 42 Soit 𝑆 une matrice réelle symétrique positive, et 𝑇 une matrice réelle antisymé-
trique.

1) Montrer que les valeurs propres de𝑇 sont imaginaires pures.
2) Montrer que det(𝑆) ⩽ det(𝑆 +𝑇 ).
◻ Exercice 43 Soient 𝑓 et 𝑔 deux endomorphismes symétriques et positifs, tels que 𝑓 ○𝑔 = 𝑔 ○ 𝑓 .
1) Montrer que 𝑓 +𝑔 et 𝑓 ○𝑔 sont symétriques et positifs.
2) Comparer Im(𝑓 ), Im(𝑔) et Im(𝑓 +𝑔).
3) Comparer Ker(𝑓 ), Ker(𝑔) et Ker(𝑓 +𝑔).
◻ Exercice 44 Soient 𝐵 ∈ 𝑆𝑛(R) et une suite (𝐴𝑝) d’éléments de 𝑆𝑛(R). On écrit pour 𝑋 et 𝑌 dans
𝑆𝑛(R), 𝑋 ⩽ 𝑌 si et seulement si 𝑌 −𝑋 est positive.
Démontrer que ∀𝑝 ∈ N 𝐴𝑝 ⩽ 𝐴𝑝+1 ⩽ 𝐵 implique que la suite (𝐴𝑝) converge dans 𝑆𝑛(R) et que
lim

𝑝→+∞
𝐴𝑝 ⩽ 𝐵.

◻ Exercice 45 Soit 𝐴 = (𝑎𝑖 𝑗) ∈M𝑛(R) une matrice symétrique définie positive.

1) Montrer que l’on a : det(𝐴)
1
𝑛 ⩽ 1

𝑛 tr(𝐴).

2) Montrer que det(𝐴) ⩽
𝑛

∏
𝑘=1

𝑎𝑘𝑘 .
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CHAPITRE 15

Dérivation

A Autour du théorème de Rolle et des accroissements finis

◻ Exercice 1 Soit 𝑓 une fonction dérivable sur R, ayant une limite finie en +∞. La fonction 𝑓 ′
admet-elle une limite en +∞?

◻ Exercice 2 Soit 𝑃 ∈ R [𝑋 ] , scindé sur R. Montrer que 𝑃 ′ est également scindé sur R.

Montrer que, pour 𝑛 ∈ N∗, 𝑃𝑛 = [(𝑋 2 − 1)𝑛](𝑛) admet 𝑛 racines réelles distinctes dans ]−1, 1[ .

◻ Exercice 3 Soit 𝑓 ∶ [𝑎,𝑏] Ð→ R une fonction n fois dérivable sur [𝑎,𝑏] et s’annulant en 𝑛 + 1
points distincts de [𝑎,𝑏] (𝑛 ∈ N, (𝑎,𝑏) ∈ R2, 𝑎 < 𝑏).
Démontrer qu’il existe un réel 𝑐 ∈]𝑎,𝑏[ tel que 𝑓 (𝑛)(𝑐) = 0.

◻ Exercice 4 Soit 𝑓 ∶ [𝑎,𝑏]Ð→ R une fonction continue sur [𝑎,𝑏], dérivable sur ]𝑎,𝑏[ et telle que
𝑓 (𝑎) = 𝑓 (𝑏) = 0 ((𝑎,𝑏) ∈ R2, 𝑎 < 𝑏).
Démontrer qu’il existe un réel 𝑐 ∈]𝑎,𝑏[ tel que 𝑓 ′(𝑐) = 𝑓 (𝑐).

On pourra utiliser la fonction auxiliaire 𝜑 ∶ 𝑥 z→ 𝑒−𝑥 𝑓 (𝑥).

◻ Exercice 5 Montrer que : ∀𝜆 ∈ [0, 12] , ∣
1√
1−𝜆
− 1∣ ⩽ 𝜆

√
2.

◻ Exercice 6 Démontrer les inégalités suivantes

1) ∀(𝑎,𝑏) ∈ R2, ∣ sin𝑏 − sin𝑎∣ ⩽ ∣𝑏 − 𝑎∣.
2) ∀(𝑎,𝑏) ∈ R2, ∣ cos𝑏 − cos𝑎∣ ⩽ ∣𝑏 − 𝑎∣.
3) ∀𝑥 ∈ R, 𝑒𝑥 ⩾ 1 + 𝑥 .
4) ∀𝑥 ∈ R+∗, ln(1 + 𝑥) < 𝑥 .
5) ∀𝑥 ∈ [0, 𝜋2 ], tan𝑥 ⩾ 𝑥 .
◻ Exercice 7 Déterminer le plus petit 𝐾 > 0 tel que :

∀ 𝑥 > 0 , ∣
√
1 + 𝑥 − 1 − 𝑥

2
+ 𝑥

2

8
∣ ⩽ 𝐾 𝑥3

◻ Exercice 8 Soit (𝑎,𝑏) ∈ R2, 0 ⩽ 𝑎 ⩽ 𝑏.
Démontrer que :

𝑏 − 𝑎
1 +𝑏2

⩽ arctan 𝑏 − arctan 𝑎 ⩽ 𝑏 − 𝑎
1 + 𝑎2

.
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◻ Exercice 9 Soient 𝑎 ∈ ]0,+∞[ , et 𝑓 ∶ [𝑎,+∞[Ð→ R une application continue sur [𝑎,+∞[ ,
dérivable sur ]𝑎,+∞[ telle que 𝑓 (𝑎) = 0 et lim

𝑥→+∞
𝑓 (𝑥) = 0 .

Montrer qu’il existe 𝑐 ∈ ]𝑎,+∞[ , 𝑓 ′(𝑐) = 0 .

◻ Exercice 10 On considère la fonction 𝑓 ∶ R → R définie par 𝑓 ∶ 𝑥 ↦ ln(1 + 𝑥2).
1) Soit 𝑛 un entier naturel non nul. Démontrer que 𝑓 est 𝑛 fois dérivable sur R et qu’il existe une

fonction polynôme 𝑝𝑛 de degré 𝑛 telle que :

∀𝑥 ∈ R, 𝑓 (𝑛)(𝑥) = 𝑝𝑛(𝑥)
(1 + 𝑥2)𝑛

.

2) Démontrer que 𝑝𝑛 admet 𝑛 racines réelles distinctes.

◻ Exercice 11 Soient 𝑓 ∶ [𝑎,𝑏] Ð→ R une fonction dérivable sur [𝑎,𝑏] telle que 𝑓 (𝑎) = 𝑓 (𝑏) = 0
((𝑎,𝑏) ∈ R2, 𝑎 < 𝑏)
et 𝑑 un réel n’appartenant pas à [𝑎,𝑏].
Démontrer qu’il existe un point𝐶 de la courbe représentative de 𝑓 où la tangente passe par le point
𝐷 de coordonnées (𝑑, 0).
On pourra utiliser la fonction auxiliaire 𝜑 ∶ 𝑥 z→ 𝑓 (𝑥)

𝑥−𝑑 .

◻ Exercice 12 (Majoration de l’erreur dans une interpolation linéaire)
Soit 𝑓 ∶ [𝑎,𝑏]Ð→ R dérivable sur [𝑎,𝑏] et admettant une dérivée seconde sur ]𝑎,𝑏[.

L’interpolation linéaire de 𝑓 sur [𝑎,𝑏] est l’unique fonction affine ℓ telle que ℓ(𝑎) = 𝑓 (𝑎) et ℓ(𝑏) =
𝑓 (𝑏) , c’est à dire :

ℓ ∶ 𝑥 ↦ 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

(𝑥 − 𝑎) + 𝑓 (𝑎)

On pose 𝜀 ∶ [𝑎,𝑏]→ R définie par
𝜀 ∶ 𝑥 ↦ 𝑓 (𝑥) − ℓ(𝑥)

1) Montrer que : ∀ 𝑥 ∈ ]𝑎,𝑏[ , ∃ 𝑐𝑥 ∈ ]𝑎,𝑏[ ,

𝑓 (𝑥) − ( 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

(𝑥 − 𝑎) + 𝑓 (𝑎)) = 1
2
(𝑥 − 𝑎)(𝑥 −𝑏) 𝑓 ′′(𝑐𝑥)

2) On suppose ici que 𝑓 est de classe C 2 sur [𝑎,𝑏].

Justifier l’existence de𝑀2(𝑓 ) = sup
𝑢 ∈ [𝑎,𝑏]

∣𝑓 ′′(𝑢)∣.

Montrer que :

∀ 𝑥 ∈ [𝑎,𝑏] , ∣𝑓 (𝑥) − ( 𝑓 (𝑏)−𝑓 (𝑎)𝑏−𝑎 (𝑥 − 𝑎) + 𝑓 (𝑎))∣ ⩽ (𝑏−𝑎)
2

8 𝑀2(𝑓 )

◻ Exercice 13 Soient 𝑛 ∈ N∗ , (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ R𝑛 tels que 𝑎1 < 𝑎2 < . . . < 𝑎𝑛 et 𝑓 ∶ [𝑎1, 𝑎𝑛]Ð→ R
une application de classe C 𝑛−1 sur [𝑎1, 𝑎𝑛] , admettant une dérivée 𝑛ième sur ]𝑎1, 𝑎𝑛[ et s’annulant
en 𝑎1, 𝑎2, . . . , 𝑎𝑛 .

Montrer que :

∀ 𝑥 ∈ [𝑎1, 𝑎𝑛] , ∃ 𝜉 ∈ ]𝑎1, 𝑎𝑛[ , 𝑓 (𝑥) =
(𝑥 − 𝑎1)(𝑥 − 𝑎2) . . . (𝑥 − 𝑎𝑛)

𝑛 !
𝑓 (𝑛)(𝜉)

◻ Exercice 14 Soit 𝑓 ∶ [0, 2]Ð→ R une application de classe C 3 telle que 𝑓 (0) = 𝑓 (1) = 𝑓 (2) = 0.
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1) Montrer que :

∀ 𝑥 ∈ [0, 2] , ∃ 𝜉 ∈ ]0, 2[ , 𝑓 (𝑥) = 𝑥(𝑥 − 1)(𝑥 − 2)
6

𝑓 (3)(𝜉)

On pourra montrer que pour tout réel 𝑥 dans [0, 2], il existe un réel 𝐴𝑥 tel que 𝑓 et la fonction
𝑔 ∶ 𝑡 ↦ 𝑡(𝑡 − 1)(𝑡 − 2)𝐴𝑥 coïncident en 𝑥 .

2) Montrer que : ∫
2

0
∣𝑓 (𝑥)∣ d𝑥 ⩽ 1

12
sup
𝑢∈[0,2]

∣𝑓 (3)(𝑢)∣.

3) Déduire de la question a) sur :

∣∫
2

0
𝑓 (𝑥) d𝑥 ∣ ⩽ 1

24

⎛
⎝
sup
𝑢∈[0,2]

𝑓 (3)(𝑢) − inf
𝑢∈[0,2]

𝑓 (3)(𝑢)
⎞
⎠

Que dire des cas d’égalité ?

B Étude de suites, définition de la dérivabilité d’une application

◻ Exercice 15 Soit 𝑓 ∶ R Ð→ R dérivable en 0 , avec 𝑓 (0) = 0.

Déterminer la limite de la suite 𝑢𝑛 =
𝑛

∑
𝑘=1

𝑓 ( 𝑘𝑛2 ) .

◻ Exercice 16 Déterminer les limites des suites :

𝑢𝑛 =
𝑛

∑
𝑘=1

1√
4𝑛2−𝑘

, 𝑣𝑛 =
𝑛

∏
𝑘=1
(1 + 𝑘

𝑛2
) , 𝑤𝑛 =

𝑛

∏
𝑘=1
(1 + 𝑘

2

𝑛3
)

C Dérivations successives

◻ Exercice 17 Déterminer , pour 𝑛 ∈ N , la dérivée 𝑛ième des applications suivantes :

𝑓 ∶ 𝑥 ↦ 𝑥2(1 + 𝑥)𝑛, 𝑔 ∶ 𝑥 ↦ 𝑒𝑥 cos(𝑥), ℎ ∶ 𝑥 ↦ 1
𝑥2 − 1

◻ Exercice 18 Soit 𝑓 ∶ R → R définie par 𝑓 ∶ 𝑥 ↦ 1
1 + 𝑥2

.

Montrer que pour tout 𝑛 ∈ N, il existe une fonction polynomiale de degré 𝑛 telle que

𝑓 (𝑛) ∶ 𝑥 ↦ 𝑃𝑛(𝑥)
(1 + 𝑥2)𝑛+1

◻ Exercice 19 Soit 𝑓 ∶ [0,+∞[Ð→ R une application de classe C 2 telle que 𝑓 ′(0) = 0.
Montrer qu’il existe une application 𝑔 ∶ [0,+∞[Ð→ R de classe C 1 telle que :

∀ 𝑥 ∈ [0,+∞[ , 𝑓 (𝑥) = 𝑔(𝑥2)

◻ Exercice 20 Soit 𝑛 ∈ N∗ et 𝑓 ∶ R∗ → R une application 𝑛 fois dérivable sur R∗.
On pose 𝑓𝑛 ∶ R∗ → R définie par 𝑓𝑛 ∶ 𝑥 ↦ 𝑥𝑛−1𝑓 ( 1𝑥 ).

Montrer que : ∀ 𝑥 ∈ R∗ , 𝑓 (𝑛)𝑛 (𝑥) = (−1)
𝑛

𝑥𝑛+1 𝑓 (𝑛) ( 1𝑥 )
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D Accroissements finis, inégalité des accroissements finis, formules de
Taylor

◻ Exercice 21
1) Montrer que : ∀𝑥 ∈ R∗+, 1

𝑥+1 < ln(𝑥 + 1) − ln(𝑥) < 1
𝑥

2) En déduire pour 𝑘 ∈ N ∖ {0, 1} fixé , la limite quand 𝑛 tend vers +∞ de
𝑘𝑛

∑
𝑝=𝑛+1

1
𝑝 .

3) Soit 𝑓 ∶ R Ð→ R dérivable en 0, avec 𝑓 (0) = 0. Déterminer la limite de la suite 𝑢𝑛 =
𝑛

∑
𝑘=1

𝑓 ( 1
𝑛+𝑘 )

.
◻ Exercice 22 Soit 𝛼 ∈]0, 1[.
1) Montrer que ∀𝑛 ∈ N∗ , 𝛼

(𝑛+1)1−𝛼 ⩽ (𝑛 + 1)𝛼 −𝑛𝛼 ⩽
𝛼

𝑛1−𝛼

2) En déduire un équivalent de 𝑆𝑛 =
𝑛

∑
𝑝=1

1
𝑝 1−𝛼 quand 𝑛 tend vers +∞.

◻ Exercice 23 Montrer que 𝑥 z→ 𝑒𝑥 est 1 lipschitzienne sur ] −∞, 0] .

◻ Exercice 24 Montrer les inégalités suivantes :

1) ∀𝑥 ∈ R+, 𝑥

1 + 𝑥2
≤ arctan𝑥 ≤ 𝑥

2) ∀𝑥 ∈]0, 1[, 𝑥 ≤ arcsin𝑥 ≤ 𝑥√
1 − 𝑥2

.

Etablir qu’en fait ces inégalités sont strictes.

◻ Exercice 25 Soit 𝑓 une application de classe C 2 sur R à valeurs complexes, telle que 𝑓 , 𝑓 ′ et 𝑓 ′′

soient bornées sur R. On note ∥ ∥∞ la norme infini sur R.

1) Soitℎ un réel strictement positif, soit 𝑡 un réel. Établir unemajoration dumodule des complexes
𝐶(𝑡) et 𝐷(𝑡) où :

𝐶(𝑡) = 𝑓 (𝑡 +ℎ) − 𝑓 (𝑡) −ℎ𝑓 ′(𝑡) et 𝐷(𝑡) = 𝑓 (𝑡 −ℎ) − 𝑓 (𝑡) +ℎ𝑓 ′(𝑡).
2) En déduire que : ∥𝑓 ′∥∞ ⩽

√
2
√
∥𝑓 ∥∞ ∥𝑓 ′′∥∞ (inégalité de Kolmogorov).

E Prolongement de classe C 1, de classe C 𝑘

◻ Exercice 26
1) Montrer que : 𝑓 ∶ 𝑥 z→ cos(𝜋𝑥)

sin(𝜋𝑥) −
1
𝜋𝑥 définie sur ]−1, 1[ ∖ {0} est prolongeable en une fonction

de classe C 1 sur ] − 1, 1[.
2) Montrer que : 𝑓 ∶ 𝑥 z→ 1

ln(𝑥) −
1
𝑥−1 définie sur ]0,+∞[ ∖ {1} est prolongeable en une fonction

de classe C 1 sur ]0,+∞[.
◻ Exercice 27 Soit 𝑓 ∶ R → R la fonction définie par

𝑓 ∶ 𝑥 ↦ { 𝑒
−1/𝑥2 si 𝑥 > 0
0 si 𝑥 ⩽ 0

Montrer que 𝑓 est de classe C +∞ sur R

F Fonctions circulaires réciproques

◻ Exercice 28 Etudier les fonctions :

𝑎) 𝑓 ∶ 𝑥 z→ arccos(
√

1+cos(𝑥)
2 ) − 𝑥

2 𝑏) 𝑔 ∶ 𝑥 z→ arctan ( 𝑥
𝑥+1) − arctan (𝑥−1𝑥 )

𝑐) ℎ ∶z→ 2arctan(
√
1 + 𝑥2 − 𝑥) + arctan(𝑥) 𝑑) 𝑘 ∶ 𝑥 z→ 2arctan

√
1−𝑥
1+𝑥 + arcsin(𝑥)
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◻ Exercice 29 Soit 𝑔 la fonction : 𝑥 ↦ arcsin
2𝑥

1 + 𝑥2
.

1) Quel est le domaine de définition de 𝑔 ?
2) Déterminer les intervalles sur lesquels 𝑔 est dérivable, et donner sur chacun d’eux une expres-

sion de 𝑔 à l’aide de la fonction arctan.
3) Retrouver la nouvelle expression de 𝑔 en calculant 𝑔(tan𝜑).

◻ Exercice 30 Montrer que pour tout 𝑥 ∈ R, 2 arctan(
√
1 + 𝑥2 − 𝑥) + arctan𝑥 = 𝜋

2
.

◻ Exercice 31 Construire la courbe représentative de la fonction :

𝑓 ∶ 𝑥 z→ arccos(cos𝑥) + 1
2
arccos(cos 2𝑥)

G Applications à valeurs vectorielles

◻ Exercice 32 Soit𝑀 ∈M𝑛(R). Montrer que, pour 𝑠 au voisinage de 0 : 𝑒𝑠𝑀 = 𝐼 + 𝑠𝑀 +𝑂(𝑠2).

◻ Exercice 33 Soit𝑀 ∈M𝑛(R). Montrer que pour 𝑠 au voisinage de 0,

det (𝐼 + 𝑠𝑀) = 1 + 𝑠 tr(𝑀) +𝑂(𝑠2) et que det (𝐼 + 𝑠𝑀 +𝑂(𝑠2)) = 1 + 𝑠 tr(𝑀) +𝑂(𝑠2)

◻ Exercice 34
1) Soit 𝑓 (𝑥) = 1

𝑥 −𝜔
, 𝜔 ∈ C ∖ R. Montrer que 𝑓 est de classe C∞ sur R et calculer 𝑓 (𝑛)(𝑥) .

2) Déterminer la dérivée 𝑛-ième de 𝑥 Ð→ ln(1 + 𝑥2) .
◻ Exercice 35 Soit 𝐴 ∶ 𝐼 Ð→ M𝑛(K) une application dérivable sur l’intervalle 𝐼 . On note 𝐴′

l’application dérivée.

1) Montrer que𝐴⊺ ∶ 𝑥 ↦ (𝐴(𝑥))⊺ est dérivable sur 𝐼 et que si pour tout 𝑥 de 𝐼 ,𝐴(𝑥) est symétrique,
alors pour tout 𝑥 de 𝐼 , 𝐴′(𝑥) l’est aussi.

2) Montrer que si pour tout 𝑥 de 𝐼 ,𝐴(𝑥) ∈ GL𝑛(K) , alors 𝑥 ↦ 𝐴(𝑥)−1 est dérivable sur 𝐼 . Calculer
la dérivée de cette application.

◻ Exercice 36 (Démonstration variationnelle du théorème spectral)
Soit 𝑢 un endomorphisme symétrique d’un espace euclidien ((𝐸, (.∣.)) non réduit à son vecteur nul.
Soit S la sphère unité de 𝐸.

1) Montrer que l’application 𝑓 ∶ 𝑥 ∈S ↦ (𝑢(𝑥)∣𝑥) admet un maximum.

Soit 𝑥0 un point de S où 𝑓 est maximale.

2) Soit ℎ ∈ (R𝑥0)⊥. En considérant le développement limité d’ordre 1 en 0 de l’application 𝑡 ∈ R ↦
𝑓 ( 𝑥0+𝑡ℎ
∥𝑥0+𝑡ℎ∥), montrer que ℎ ⊥ 𝑢(𝑥0).

3) En déduire que 𝑢(𝑥0) est un vecteur propre de 𝑢.
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CHAPITRE 16

Équations différentielles

1 Applications du cours

A Equations différentielles linéaires du premier ordre

◻ Exercice 1 Résoudre les équations différentielles suivantes :
(1) (1 + 𝑥2)𝑦′ + 4𝑥𝑦 = 0 (2) 𝑥𝑦′ − 2𝑦 = 0 (3) 𝑦′ + 𝑥𝑦 = 1
(4) 𝑦′ +𝑦 = 𝑒𝑥 + sin𝑥 (5) 𝑥𝑦′ −𝑦 = 𝑥2 (6) 𝑦′ cos𝑥 +𝑦 sin𝑥 = 1
(7) 𝑦′ + 2𝑦 = 𝑥2 − 𝑥 + 3 (8) 𝑥3𝑦′ + 2(𝑥2 − 1)𝑦 = 0 (9) 𝑥𝑦′ +𝑦 = 3𝑥2
(10) 𝑥𝑦′ −𝑦 = (𝑥 − 1)𝑒𝑥 (11) 𝑦′ +𝑦 tan𝑥 = sin 2𝑥 (12) 𝑥𝑦′ −𝑦 = ln𝑥
(13) 𝑦′ −𝑦 = 𝑥2 sh𝑥 (14) 𝑦′ +𝑦 = cos𝑥 (15) 𝑦′ −𝑦 = 𝑒𝑥 ln𝑥

◻ Exercice 2 Résoudre l’équation différentielle 𝑦′ − (2 − 𝑖)𝑦 = 0.

◻ Exercice 3 Résoudre 𝑥𝑦′ − 2𝑦 = 0. Déterminer la dimension de l’espace vectoriel des solutions
sur R.

◻ Exercice 4 Résoudre : 𝑦′ sin(𝑥) − 2 cos(𝑥)𝑦 = 0. Déterminer la dimension de l’espace des solu-
tions sur R.

◻ Exercice 5 Résoudre, sur ]0,+∞[, le problème de Cauchy : { 𝑥𝑦
′ −𝑦 = 𝑥3

𝑦(1) = 0 .

◻ Exercice 6 Démontrer que l’équation différentielle 𝑥𝑦′ + 𝑦 = 𝑒𝑥 admet une unique solution
définie sur R.

◻ Exercice 7 On considère l’équation différentielle (𝐸) ∶ 𝑦′ ln𝑥 + 1
𝑥
𝑦 = 1

1) Déterminer les solutions de (𝐸) sur ]0, 1[ et sur ]1,+∞[.
2) L’équation (𝐸) admet-elle des solutions sur ]0,+∞[?
◻ Exercice 8 Résoudre : (𝑒𝑥 − 1)𝑦′ + (𝑒𝑥 + 1)𝑦 = 3 + 2𝑒𝑥 . Déterminer les solutions sur R.

◻ Exercice 9 Déterminer les solutions sur R de l’équation différentielle :

𝑥𝑦′(𝑥) +𝑦(𝑥) − 2𝑥√
𝑥2 + 1

= 0
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◻ Exercice 10 Résoudre l’équation différentielle : ∣𝑥 ∣𝑦′ + (𝑥 − 1)𝑦 = 𝑥2. Étudier les raccordements
éventuels.

◻ Exercice 11 Résoudre l’équation différentielle : ∣𝑥 ∣𝑦′+(𝑥2−𝑥)𝑦 = 𝑥2. Étudier les raccordements
éventuels.

◻ Exercice 12 Résoudre l’équation différentielle : (1−𝑥2)𝑦′(𝑥)− 2𝑥𝑦(𝑥) = 𝑥2. Étudier les raccor-
dements éventuels.

◻ Exercice 13 Étude de l’équation différentielle (𝐸) ∶ 2𝑥(1 − 𝑥)𝑦′ + (1 − 𝑥)𝑦 = 1.

◻ Exercice 14 Résoudre : 𝑥(𝑥2 − 1)𝑦′ + 2𝑦 = 𝑥2. Étudier les raccordements éventuels.

◻ Exercice 15 Résoudre l’équation différentielle : 𝑦′(𝑥) − 𝑥
𝑥2−1𝑦(𝑥) = 2𝑥 sur ]1,+∞[.

◻ Exercice 16 Résoudre l’équation différentielle suivante, pour 𝑥 ∈ ]−𝜋2 ,
𝜋
2 [ :𝑦′(𝑥)−tan(𝑥)𝑦(𝑥) =

cos(𝑥).

B Equations différentielles linéaires du deuxième ordre à coefficients constants
et second membre exponentielle

◻ Exercice 17 Résoudre :

— 𝑦′′ +𝑦′ − 2𝑦 = 2𝑥2 − 3𝑥 + 1
— 2𝑦′′ −𝑦′ − 3𝑦 = 𝑒−𝑥 cos𝑥
— 𝑦′′ +𝑦′ − 2𝑦 = 𝑒−𝑥 + cos𝑥 ,
— 𝑦′′ − 2𝑦′ +𝑦 = ch𝑥

— 𝑦′′ − 2𝛼𝑦′ + (1 + 𝛼2)𝑦 = sin𝑥 où 𝛼 ∈ R

◻ Exercice 18 Chercher les solutions de : 𝑦′′ +𝑦′ + 𝑦
2
= sin𝑥 vérifiant : 𝑦(0) = 𝑦′(0) = 0.

C Equations différentielles linéaires du deuxième ordre : méthodes di-
verses

◻ Exercice 19 Résoudre (𝐸) 𝑦′′ −𝑦 = 2𝑒𝑥
1+𝑒𝑥 .

◻ Exercice 20 Soit : (𝐸1) 𝑥𝑦′ −𝑦 + ln𝑥 − 1 = 0 et (𝐸2) 𝑥(1+𝑥(ln(𝑥)− 2))𝑦′′ + (1−𝑥)𝑦′ +𝑦 − 1 = 0.
1) Résoudre (𝐸1).
2) Montrer que parmi l’ensemble des solutions de (𝐸1), il existe une solution qui vérifie (𝐸2).
3) Montrer que parmi l’ensemble des solutions de (𝐸1), il existe une solution qui vérifie (𝐻2),

équation homogène associée à (𝐸2).
4) Trouver une solution évidente de (𝐸2).
5) En déduire la solution générale de (𝐸2) sur des intervalles où elle est résoluble en 𝑦′′.
◻ Exercice 21 Résoudre l’équation différentielle : 𝑦′′(𝑥) +𝑦(𝑥) = 𝑓 (𝑥), où 𝑓 continue de R dans
R.

◻ Exercice 22 Soit l’équation différentielle : (𝐸) : 𝑦′′ +𝑦 = 1
sin(𝑥) . Résoudre (𝐸).

◻ Exercice 23 Résoudre l’équation différentielle : 𝑦′′ + 4𝑦′ + 4𝑦 = 𝑥
(𝑥−1)2𝑒

−2𝑥 .

◻ Exercice 24 𝑦′′ −𝑦 = ∣th𝑥 ∣

◻ Exercice 25 𝑦′′ +𝑦 = cotan(𝑡) où cotan(𝑡) = cos(𝑡)
sin(𝑡)

.
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◻ Exercice 26 Résoudre (𝐸) : 𝑥2𝑦′′(𝑥) − 𝑥(𝑥 + 2)𝑦′(𝑥) + (𝑥 + 2)𝑦(𝑥) = 𝑥(𝑥 + 1) en commençant
par chercher une solution évidente de l’équation homogène.

◻ Exercice 27 Soit l’équation différentielle : (𝐸) 𝑦′′ − 4𝑦 = 𝑎∣𝑥 ∣ +𝑏, (𝑎,𝑏) ∈ R.

Montrer que (𝐸) admetune unique solution sur R dont le graphe possède en −∞ et +∞ des droites
asymptotes.

◻ Exercice 28

On considère l’équation différentielle : (𝐸) 4𝑥𝑦′′ + 2𝑦′ +𝑦 = 0

Sachant qu’il existe un intervalle 𝐼 et deux fonctions 𝑓 et 𝑔 solutions de (𝐸) sur 𝐼 vérifiant : ∀𝑥 ∈
𝐼 𝑓 (𝑥)𝑔 (𝑥) = 1 , déterminer l’ensemble des solutions de (𝐸) sur 𝐼 puis sur R..

◻ Exercice 29 Soit l’équation différentielle : (1 + 2𝑥)𝑦′′(𝑥) − (2 − 4𝑥)𝑦′(𝑥) − 8𝑦(𝑥) = 0.
Résoudre en cherchant une solution particulière 𝑥 z→ 𝑒𝑎𝑥 , d’abord sur ]−∞,−12[ ou ]−

1
2 ,+∞[, puis

sur R.

◻ Exercice 30 Résoudre les équations différentielles suivantes :

1) 𝑦′′ − 2
𝑥
𝑦′ + 2

𝑥2
𝑦 = sin𝑥

(remarquer que 𝑥 ↦ 𝑥 est solution de l’équation homogène associée).

2) 𝑦′′ − 2𝑥
1 + 𝑥2

𝑦′ + 2 𝑥2 − 1
(𝑥2 + 1)2

𝑦 = 0

(chercher un polynôme solution).

3) 𝑥(1 − 2 ln𝑥)𝑦′′ + (1 + 2 ln𝑥)𝑦′ − 4
𝑥
𝑦 = 0

(chercher une solution de la forme 𝑦 = 𝑥𝛼 ).

◻ Exercice 31

Soit 𝐸 = C∞(R,C) et Φ ∶ 𝐸 → E définie par Φ ∶ 𝑓 ↦ (𝑡 ↦ 𝑓 ′(𝑡) + 𝑡 𝑓 (𝑡)).

1) Trouver les valeurs propres et les vecteurs propres de Φ.
2) Trouver les valeurs propres et les vecteurs propres de Φ2.
3) Résoudre l’équation : 𝑦′′ + 2𝑥𝑦′ + (𝑥2 − 1)𝑦 = 0.

◻ Exercice 32

Déterminer les éléments propres des endomorphismes Φ suivants :

1) 𝐸 = R[𝑋 ] et ∀𝑃 ∈ 𝐸 , Φ(𝑃)(𝑋) = 𝑋 2𝑃 ′′(𝑋) +𝑋𝑃 ′(𝑋).
2) 𝐸 = C∞(]0,+∞[) et ∀𝑓 ∈ 𝐸 , Φ(𝑓 )(𝑥) = 𝑥2𝑓 ′′(𝑥) + 𝑥 𝑓 ′(𝑥).

3) 𝐸 = C∞(]0, 1[) et ∀𝑓 ∈ 𝐸 , Φ(𝑓 )(𝑥) =
√

1 − 𝑥
𝑥

𝑓 ′(𝑥).

D Changement de variable

◻ Exercice 33 Sur ]0,+∞[, on considère l’équation différentielle :

𝑦′′ + 2
𝑥
𝑦′ + 1

𝑥2(𝑥 + 1)2
𝑦 = 0

Ramener cette équation à une équation différentielle linéaire à coefficients constants (en utilisant un
changement de variable : 𝑦 = 𝑧 ○𝜑), puis la résoudre.
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◻ Exercice 34 On considère l’équation différentielle :

𝑥 𝑦′′ − 𝑦′ − 𝑥3 𝑦 = 0

Ramener cette équation à une équation différentielle linéaire à coefficients constants (en utilisant un
changement de variable : 𝑦 = 𝑧 ○𝜑), puis la résoudre sur 𝐼1 =] −∞, 0[ et sur 𝐼2 =]0,+∞[, puis sur R.

◻ Exercice 35 Résoudre les équations différentielles suivantes :

1) 𝑦′′ −𝑦′ − 𝑒2𝑥𝑦 = 𝑒3𝑥 (poser 𝑢 = 𝑒𝑥 ).

2) 𝑦′′ − (6𝑥 + 1
𝑥
)𝑦′ + 8𝑥2𝑦 = 𝑥4 (poser 𝑢 = 𝑥2).

3) 𝑥2𝑦′′ + 𝑥𝑦′ − 4𝑦 − 4𝑥2 = 0 (poser 𝑥 = 𝑒𝑡 sur R+∗).
4) 𝑥2𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 2 + 2𝑥3 sin𝑥 (poser 𝑢 = ln𝑥 ).

◻ Exercice 36 On considère l’équation

(𝐸) ∶ 𝑥𝑦′′ + 3𝑦′ − 4𝑥3𝑦 = 𝑥

1) Déterminer les solutions développables en série entière de l’équation homogène associée.
2) Résoudre (𝐸) sur R∗+.
3) Résoudre (𝐸) sur R.
◻ Exercice 37 Résoudre : (𝑥2 + 𝑥)𝑦′′(𝑥) + (3𝑥 + 1)𝑦′(𝑥) + 𝑦(𝑥) = 0 (rechercher une solution
développable en série entière).

◻ Exercice 38 Rechercher les solutions sur ]0,+∞[ de l’équation différentielle :
𝑥2𝑦′′ +𝑦 = 0.

(faire le changement de variable 𝑥 = 𝑒𝑡 ).

E Changement de fonction inconnue

◻ Exercice 39 𝑥2𝑦′′ + 4𝑥𝑦′ + (2 − 𝑥2)𝑦 = 1 (poser 𝑢 = 𝑥2𝑦 sur R+∗ et R−∗ ; étudier le recollement
en 0).

◻ Exercice 40 (Équation de Bernoulli)
Déterminer les solutionsmaximales de l’équation différentielle (1−𝑥3)𝑦′+3𝑥2𝑦+𝑦2 = 0. On effectuera
le changement de fonction 𝑧 = 𝑦𝛼 , avec 𝛼 judicieusement choisi.

◻ Exercice 41 (Équation de Riccati)
Déterminer les solutions maximales de l’équation différentielle (1 − 𝑥3)𝑦′ + 𝑥2𝑦 + 𝑦2 − 2𝑥 = 0. On
commencera par chercher une solution particulière 𝑦0 ∶ 𝑥 ↦ 𝑥𝛼 puis on effectuera le changement de
fonction 𝑦 = 𝑧 +𝑦0.

F Recherche de solutions développables en séries entières

◻ Exercice 42 Résoudre 4𝑥𝑦′′ + 2𝑦′ −𝑦 = 0 (on cherchera d’abord les solutions développables en
séries entières).

◻ Exercice 43 Résoudre 𝑥(𝑥 − 1)𝑦′′ + 3𝑥𝑦′ + 𝑦 = 0 (chercher une solution développable en série
entière, trouver les solutions définies sur des intervalles les plus grand possibles).

◻ Exercice 44 𝑥(𝑥2 + 1)𝑦′′ − 2(𝑥2 + 1)𝑦′ + 2𝑥𝑦 = 0 (chercher les solutions développables en série
entière).
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◻ Exercice 45 Soit l’équation différentielle (𝐸) 𝑥𝑦′′(𝑥) +𝑦′(𝑥) −𝑦(𝑥) = 0.
1) Déterminer l’ensemble des solutions développables en séries entières.
2) Déterminer la dimension de l’espace vectoriel des solutions sur R.

G Equations fonctionnelles ou intégrales se ramenant à des équations
différentielles

◻ Exercice 46 Déterminer les fonctions 𝑓 continues sur R telles que :

∀𝑥 ∈ R, 2𝑥 𝑓 (𝑥) = 3∫
𝑥

0
𝑓 (𝑡)𝑑𝑡

◻ Exercice 47 Résoudre ∀𝑥 ∈ R , 𝑓 ′(𝑥) + 𝑓 (−𝑥) = 𝑒𝑥 , où 𝑓 est une fonction inconnue de classe
C 1 sur R.

◻ Exercice 48 Résoudre l’équation différentielle : 𝑓 ′′(𝑥) + 𝑓 (−𝑥) = −𝑥 + cos(𝑥).

◻ Exercice 49 Trouver les applications 𝑔 continues de R+ dans R+ vérifiant pour tout 𝑥 > 0 :

1
2 ∫

𝑥

0
𝑔2(𝑡) d𝑡 = 1

𝑥
(∫

𝑥

0
𝑔(𝑡) d𝑡)

2

.

◻ Exercice 50 Trouver les applications continues sur R à valeurs dans R telles que :

∀𝑥 ∈ R, 𝑓 (𝑥) +∫
𝑥

0
𝑡 𝑓 (𝑡) d𝑡 = 1

◻ Exercice 51 Trouver toutes les fonctions continues de R dans R telles que :

∀ 𝑥 ∈ R , 𝑓 (𝑥) −∫
𝑥

0
𝑡 𝑓 (𝑡) d𝑡 + 𝑥 ∫

𝑥

0
𝑓 (𝑡) d𝑡 = 1

◻ Exercice 52 Déterminer l’ensemble des fonctions 𝑓 continues de R dans R vérifiant :

∀ 𝑥 ∈ R , 𝑓 (𝑥) +∫
𝑥

0
(𝑥 − 𝑡)𝑓 (𝑡) d𝑡 = 1

H Systèmes différentiels linéaires

◻ Exercice 53 Résoudre le système différentiel :

{
sh (2𝑡)𝑥 ′(𝑡) = ch (2𝑡)𝑥(𝑡) −𝑦(𝑡)
sh (2𝑡)𝑦′(𝑡) = −𝑥(𝑡) + ch (2𝑡)𝑦(𝑡)

En sachant qu’il existe une solution telle 𝑥𝑦 = 1.

◻ Exercice 54 Résoudre les systèmes différentiels suivants :

𝑎) { 𝑥
′ = 3𝑥 −𝑦 + cos 𝑡
𝑦′ = 𝑥 +𝑦 + 2 sin 𝑡 𝑏)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 𝑦 + 𝑧 − 3𝑥
𝑦′ = 𝑧 + 𝑥 − 3𝑦
𝑧′ = 𝑥 +𝑦 − 3𝑧

, 𝑐)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 3𝑥 + 2𝑦 − 2𝑧
𝑦′ = −𝑥 + 𝑧
𝑧′ = 𝑥 +𝑦

◻ Exercice 55 Résoudre le système différentiel :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = −6𝑥 + 5𝑦 + 3𝑧 + 1
𝑡

𝑦′ = −8𝑥 + 7𝑦 + 4𝑧
𝑧′ = −2𝑥 +𝑦 + 𝑧 + 2

𝑡

.

64



◻ Exercice 56 Résoudre le système différentiel :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 3𝑥 + 8𝑦 + 2𝑧 + sin 𝑡 − 4𝑒𝑡

𝑦′ = −2𝑥 − 5𝑦 − 𝑧 − sin 𝑡 + 2𝑒𝑡

𝑧′ = 4𝑥 + 12𝑦 + 3𝑧 + 2 sin 𝑡 − 4𝑒𝑡
.

◻ Exercice 57 Résoudre le problème de Cauchy :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 𝑥 +𝑦 − 𝑧
𝑦′ = 2𝑦 + 𝑧
𝑧′ = 3𝑧

avec 𝑥(0) = 5,𝑦(0) = 3, 𝑧(0) = 1.

◻ Exercice 58

Déterminer les solutions réelles du système :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = −𝑥 +𝑦
𝑦′ = −𝑦 + 𝑧
𝑧′ = −𝑧 + 𝑥

◻ Exercice 59 Résoudre le système différentiel :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 𝑥 +𝑦 − 𝑧 − 1
𝑦′ = 𝑥 −𝑦 + 𝑧 − 1
𝑧′ = −𝑥 +𝑦 + 𝑧 − 1

.

◻ Exercice 60 Résoudre les système différentiels :{ 𝑥
′(𝑡) = 2𝑡𝑥(𝑡) −𝑦(𝑡) + 𝑡 cos(𝑡)
𝑦′(𝑡) = 𝑥(𝑡) + 2𝑡𝑦(𝑡) + 𝑡 sin(𝑡) ,

⎧⎪⎪⎨⎪⎪⎩

𝑦′ = 𝑦 + 𝑧 + sin 𝑡
𝑧′ = −𝑦 + 3𝑧

◻ Exercice 61 Résoudre le système différentiel : { 𝑥
′(𝑡) = 𝑦(𝑡) + 3𝑒𝑡
𝑦′(𝑡) = 1

2(𝑥(𝑡) +𝑦(𝑡)) + 𝑒−𝑡
.

◻ Exercice 62 Résoudre le système différentiel :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 𝑥 +𝑦
𝑦′ = −𝑥 + 2𝑦 + 𝑧
𝑧′ = 𝑥 + 𝑧

.

◻ Exercice 63 Résoudre les systèmes différentiels suivants. En déduire exp(𝑡𝐴) :
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 2𝑥 +𝑦
𝑦′ = 𝑥 + 2𝑦
𝑧′ = 𝑥 +𝑦 + 3𝑧

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = −5𝑥 − 3𝑧
𝑦′ = 14𝑥 +𝑦 + 7𝑧
𝑧′ = 14𝑥 + 8𝑧

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 2𝑥 + 𝑧 + sh 𝑡

𝑦′ = 𝑥 −𝑦 − 𝑧 + ch 𝑡

𝑧′ = −𝑥 + 2𝑦 + 2𝑧 − ch 𝑡 .

◻ Exercice 64 Résoudre les systèmes différentiels suivants :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 2𝑦 + 2𝑧
𝑦′ = −𝑥 + 2𝑦 + 2𝑧
𝑧′ = −𝑥 +𝑦 + 3𝑧

,
⎧⎪⎪⎨⎪⎪⎩

𝑦′ +𝑦 = 𝑧
𝑧′ + 2𝑧 = 𝑦 − 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 𝑥 +𝑦 − 𝑧
𝑦′ = 2𝑥 +𝑦 − 2𝑧
𝑧′ = −2𝑥 + 2𝑦 + 𝑧

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 2𝑥 +𝑦 + 𝑧
𝑦′ = 𝑥 −𝑦 − 𝑧
𝑧′ = −𝑥 + 2𝑦 + 2𝑧

◻ Exercice 65 Résoudre les systèmes différentiels suivants :

𝑎) { 𝑥
′ = 𝑦 + cos 𝑡
𝑦′ = −𝑥 + 1 𝑏)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 7𝑥 + 2𝑦 − 2𝑧 + 𝑡
𝑦′ = 2𝑥 + 4𝑦 − 𝑧 + 2𝑡
𝑧′ = −2𝑥 −𝑦 + 4𝑧 − 𝑡

𝑐)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 3𝑥 +𝑦
𝑦′ = −4𝑥 −𝑦
𝑧′ = 4𝑥 − 8𝑦 + 2𝑧

.

◻ Exercice 66 Résoudre le système différentiel suivant :

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 ′ = 𝑥 + 4𝑦 − 2𝑧
𝑦′ = 4𝑥 +𝑦 − 2𝑧
𝑧′ = −2𝑥 − 2𝑦 − 2𝑧

.
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◻ Exercice 67 Résoudre le système différentiel :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 ′ = 3𝑦 + 𝑡
𝑦′ = 3𝑥 + 4𝑧 + 𝑡
𝑧′ = 𝑥 +𝑦 + 𝑡

.

2 Exercices plus élaborés

A Équations différentielles linéaires du premier ordre

◻ Exercice 68 On considère l’équation différentielle (𝐸) ∶ 𝑥2𝑦′(𝑥) +𝑦(𝑥) = 𝑥4.

1) Résoudre (𝐸) sur ]0,+∞[.
2) Existe t-il des solutions qui admettent une limite finie à droite en 0?

Dans ce cas, montrer que ces dernières admettent un développement limité (qu’on déterminera)
à tout ordre 𝑛 en 0.
Sont-elles développables en série entière en 0?

3) Déterminer les solutions sur R de (𝐸), visualiser la situation avec un logiciel.

B Equations linéaires (ou non) du second ordre

◻ Exercice 69 Soit l’équation différentielle : (𝐸) ∣𝑦′′∣ = 𝑦.
1) On considère une solution 𝑓 de (𝐸) qui s’annule en un point 𝑎 de R.

a) Montrer que 𝑓 ′(𝑎) = 0.
b) Etudier les signes de 𝑔(𝑥) = 𝑒−𝑥(𝑓 (𝑥) + 𝑓 ′(𝑥)) et de ℎ(𝑥) = 𝑒𝑥(𝑓 (𝑥) − 𝑓 ′(𝑥)) et prouver

que 𝑓 est la fonction nulle sur R.
2) Donner la forme générale des solutions de (𝐸).
◻ Exercice 70 Résoudre sur ]0, 𝜋2 [ l’équation différentielle :

(1 − cos(4𝑥))𝑦′′ + 2 sin(4𝑥)𝑦′ − 8𝑦 = 0

sachant qu’il existe deux solutions inverses l’une de l’autre.

C Systèmes différentiels linéaires

◻ Exercice 71
1) Soit 𝑛 ∈ N∗, soit le système différentiel :

(𝐸) 𝑋 ′(𝑡) = 𝐴(𝑡)𝑋(𝑡)

où 𝐴 ∶ R →M𝑛(K) est une fonction continue.

Soit (𝑋1,𝑋2,⋯,𝑋𝑛) un système fondamental de solutions de (𝐸), soit

𝑡 z→𝑊 (𝑡) =𝑊 (𝑋1,⋯,𝑋𝑛)(𝑡) = det(𝑋1(𝑡),⋯,𝑋𝑛(𝑡))

son Wronskien (dans la base canonique).

Montrer que : ∀(𝑠, 𝑡) ∈ R,𝑊 (𝑡) =𝑊 (𝑠) exp(∫
𝑡

𝑠
tr(𝐴(𝑢)) d𝑢).

On pourra, pour 𝑡 fixé, considérer l’application 𝜑 définie sur (K𝑛)𝑛 par :

𝜑 ∶ (𝑌1,⋯,𝑌𝑛)↦
𝑛

∑
𝑖=1

det
can
(𝑌1,⋯,𝑌𝑖−1,𝐴(𝑡)𝑌𝑖,𝑌𝑖+1,⋯,𝑌𝑛),

montrer que 𝜑 est multilinéaire alternée, et en déduire le résultat.
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2) Appliquer le résultat précédent au wronskien d’un système fondamental de solutions d’une
équation différentielle linéaire scalaire d’ordre 𝑛 :

𝑦(𝑛)(𝑡) = 𝑎0(𝑡)𝑦(𝑡) + . . . + 𝑎𝑛−1(𝑡)𝑦(𝑛−1)(𝑡)

où 𝑎0, . . . , 𝑎𝑛−1 sont des fonctions continues sur R à valeurs scalaires.

◻ Exercice 72 On considère R3 muni de sa structure euclidienne canonique. Soit 𝐴 ∈ M3(R)
antisymétrique non nulle. On considère l’équation différentielle :

(𝐻) 𝑋 ′(𝑡) = 𝐴𝑋(𝑡)

1) Montrer que pour tout 𝑋 ∈ R3, < 𝑋,𝐴𝑋 >= 0. En déduire que Sp(𝐴) ⊂ {0}
2) Montrer que rg(𝐴) = 2.
3) Quelles sont les solutions constantes de (𝐻)?
4) Soit 𝑋 une solution de (H).

a) Montrer que 𝑡 ↦ ∥𝑋(𝑡)∥ est constante.
b) Montrer qu’il existe un cercle C tel que, pour tout 𝑡 ∈ R, 𝑋(𝑡) ∈ C.

◻ Exercice 73 Soit (𝑈 ,𝑉 ,𝑋0) ∈M𝑛,1(R)3,𝑈 /= 0, 𝑉 /= 0, 𝜆 ∈ R, 𝐵 =𝑈𝑉 ⊺ et 𝐴 = 𝜆𝐼𝑛 + 𝐵.

1) Déterminer la solution du problème de Cauchy :

𝑋 ′(𝑡) = 𝐴𝑋(𝑡) , 𝑋(0) = 𝑋0

en fonction de 𝜆, tr(𝐵), 𝐵, 𝑋0 et 𝑡 .
2) Quels sont les sous-espaces 𝐸 de R𝑛 tels que : 𝑋0 ∈ 𝐸 Ô⇒ (∀𝑡 ∈ R , 𝑋(𝑡) ∈ 𝐸).
3) Trouver une condition nécessaire et suffisante pour que toute solution possède une limite finie

en +∞.

D Equations fonctionnelles

◻ Exercice 74 Déterminer toutes les applications 𝑓 ∶ ]0,+∞[Ð→ R, telle que 𝑓 soit dérivable sur
]0,+∞[, et :

∀ 𝑥 ∈]0,+∞[ , 𝑓 ′(𝑥) = 𝑓 ( 1
4𝑥
)

On résoudra l’équation d’ordre 2 associée à l’aide du changement de variable 𝑥 = 𝑒𝑡 .

E Études qualitatives d’équations linéaires

◻ Exercice 75 Soit 𝑎 une application continue de R dans R, et bornée sur R. On considère l’équa-
tion différentielle 𝑦′ − 𝑘𝑦 = 𝑎 avec 𝑘 ∈ ]0,+∞[. Montrer qu’elle admet une unique solution bornée
sur R.

◻ Exercice 76 Soit 𝑓 une fonction de classe C∞ sur R.

1) On pose 𝑔 = 𝑓 + 𝑓 ′.
a) Calculer 𝑓 en fonction de 𝑔.
b) Montrer que si 𝑔 a une limite nulle en +∞, il en est de même de 𝑓 .
c) Que se passe-t-il si lim

+∞
𝑔 = ℓ .

2) On pose ℎ = 𝑓 + 𝑓 ′+ 𝑓 ′′. Calculer 𝑓 en fonction de ℎ. Montrer que si ℎ a une limite nulle en +∞,
il en est de même de 𝑓 .
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◻ Exercice 77 Soit l’équation différentielle (𝐸) : 𝑦′′(𝑡) + 𝑎(𝑡)𝑦′(𝑡) + 𝑏(𝑡)𝑦(𝑡) = 0, avec 𝑎 et 𝑏 à
valeurs réelles et continues sur l’intervalle 𝐼 .

1) Montrer qu’aucune solution non nulle n’a de zéro commun avec sa dérivée.
2) Soit𝑦 une solution non nulle et 𝑥0 tel que𝑦(𝑥0) = 0. Montrer que l’ensemble {𝑥 > 𝑥0 ∣𝑦(𝑥) = 0}

est soit vide soit admet un plus petit élément 𝑥1. Dans ce cas, on dit que 𝑥0 et 𝑥1 sont des zéros
consécutifs de 𝑦.

3) Soient (𝑓 ,𝑔) une famille libre de solutions de (𝐸). Montrer qu’entre deux zéros consécutifs de
𝑓 se trouve un zéro de 𝑔.

4) Si 𝑎 = 0 et 𝑏 ⩽ 0, montrer que toute solution non nulle de (𝐸) s’annule au plus une fois.
5) Soient 𝑏1 et 𝑏2 deux fonctions réelles continues sur l’intervalle 𝐼 telles que 𝑏1 ⩽ 𝑏2, et 𝑓1 et 𝑓2

non nulles, vérifiant respectivement 𝑓 ′′1 +𝑏1𝑓1 = 0 et 𝑓 ′′2 +𝑏2𝑓2 = 0.

Montrer qu’entre deux zéros consécutifs 𝑢 et 𝑣 de 𝑓1 se trouve un zéro de 𝑓2, si 𝑓1 et 𝑓2 ne sont
pas proportionnelles sur [𝑢, 𝑣].

◻ Exercice 78 Soit 𝑓 ∈ C 2(R,R) vérifiant ∀ 𝑥 ∈ R, 𝑓 ′′(𝑥) + 𝑓 (𝑥) ⩾ 0.
Montrer que : ∀ 𝑥 ∈ R, 𝑓 (𝑥) + 𝑓 (𝑥 + 𝜋) ⩾ 0.

◻ Exercice 79
1) Soit 𝑢 une application continue de R dans R ; résoudre l’équation différentielle :

𝑦′′ −𝑦 = 𝑢 , 𝑦(0) = 𝑦′0) = 0

2) En déduire que si ℎ est une application de classe C 2 sur R telle que : ℎ(0) = ℎ′(0) = 0 et pour
tout réel 𝑥 : ℎ′′(𝑥) ⩾ ℎ(𝑥), alors l’application ℎ est positive sur R.

3) Montrer que si 𝑓 est une application de classe C 2 sur R telle que 𝑓 (0) = 𝑓 ′(0) = 0 et pour tout
réel 𝑥 : 𝑓 ′′(𝑥) ⩾ 𝑓 (𝑥) + 2

ch 3(𝑥) , alors : pour tout réel 𝑥 : 𝑓 (𝑥) ⩾
sh 2(𝑥)
ch (𝑥) .

F Systèmes différentiels linéaires

◻ Exercice 80 Résoudre les systèmes différentiels :

{
𝑥 ′(𝑡) = − tan(𝑡) 𝑥(𝑡) +𝑦(𝑡)
𝑦′(𝑡) = 𝑥(𝑡) + tan 𝑡𝑦(𝑡)

, {
(1 + 𝑡2)𝑥 ′(𝑡) = 𝑡𝑥(𝑡) −𝑦(𝑡) − 𝑡
(1 + 𝑡2)𝑦′(𝑡) = 𝑥(𝑡) + 𝑡𝑦(𝑡) − 1

,{
(1 + 𝑡2)𝑥 ′(𝑡) = 𝑡𝑥(𝑡) −𝑦(𝑡) + 2𝑡
(1 + 𝑡2)𝑦′(𝑡) = 𝑥(𝑡) + 𝑡𝑦(𝑡) − 1

◻ Exercice 81 On note ∥.∥ la norme euclidienne canonique sur M𝑛,1(R) et ∥ ⋅ ∥op la norme sur
M𝑛(R) subordonnée à la norme précédente.

Soit 𝐴 ∶ R+ →M𝑛(R) une fonction continue telle que 𝑡 ↦ ∥𝐴(𝑡)∥op soit intégrable sur R+.

1) Soit 𝑋 ∶ R+ →M𝑛,1(C) dérivable vérifiant ∀𝑡 ∈ R+ 𝑋 ′(𝑡) = 𝐴(𝑡)𝑋(𝑡).

a) Montrer que pour tous 𝑎,𝑏 ∈ R+ tels que 𝑎 ⩽ 𝑏,

∥𝑋(𝑏)∥ ⩽ ∥𝑋(𝑎)∥ exp(∫
𝑏

𝑎
∥∣𝐴(𝑠)∥∣𝑑𝑠)

et ∥𝑋(𝑎)∥ ⩽ ∥𝑋(𝑏)∥ exp(∫
𝑏

𝑎
∥∣𝐴(𝑠)∥∣𝑑𝑠)

b) Montrer que 𝑋 est bornée.
c) Montrer que 𝑋 a une limite finie à l’infini.

(On pourra appliquer le théorème de Bolzano-Weierstrass à la suite (𝑋(𝑛))𝑛∈N)
2) Montrer que l’application de l’ensemble 𝐹 des solutions sur R+ de l’équation 𝑋 ′ = 𝐴𝑋 vers

M𝑛,1(C) qui à tout 𝑋 ∈ 𝐹 associe lim
𝑡→+∞

𝑋(𝑡) est un isomorphisme.
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CHAPITRE 17

Intégrales à paramètre

◻ Exercice 1 On définit 𝑓 ∶ 𝑥 ↦ ∫
1

0

𝑒−𝑥
2(1+𝑡2)

1 + 𝑡2
d𝑡 et 𝑔 ∶ 𝑥 ↦ ∫

𝑥

0
𝑒−𝑡

2
d𝑡 .

1) Montrer que 𝑓 et 𝑔 sont de classe C 1 sur R.
2) Montrer que 𝑓 +𝑔2 est constante.

3) En déduire la valeur de l’intégrale de Gauss ∫
+∞

0
𝑒−𝑡

2
d𝑡 .

◻ Exercice 2
1) Calculer pour 𝑥 > 0 : 𝐹(𝑥) = ∫

𝜋

0

1

cos2(𝑡) + 𝑥 sin2(𝑡)
d𝑡 .

On posera 𝑢 = cos(𝑡)
sin(𝑡) .

2) En déduire pour 𝑥 > 0 : 𝐺(𝑥) = ∫
𝜋

0

sin2(𝑡)
(cos2(𝑡) + 𝑥 sin2(𝑡))2

d𝑡 .

◻ Exercice 3 Soit 𝐹 ∶ 𝑥 z→ ∫
1

0
𝑡𝑥
𝑡 − 1
ln 𝑡

d𝑡 .

1) Déterminer son domaine de définition.
2) Étudier sa continuité et sa dérivabilité.
3) Calculer 𝐹(𝑥).

◻ Exercice 4 On pose 𝑓 (𝑥) = ∫
∞

0
(arctan 𝑡)𝑒−𝑡𝑥 d𝑡

1) Déterminer le domaine de définition D de 𝑓
2) La fonction 𝑓 est-elle continue sur D ? de classe C 1 ?
3) Déterminer des équivalents de 𝑓 en 0 et à l’infini.

◻ Exercice 5 Calculer 𝑓 (𝑥) = ∫
R
𝑒−𝑡

2−𝑖𝑡𝑥 d𝑡 .

◻ Exercice 6 Soit 𝑓 (𝑥,𝑦) = ∫
+∞

−∞

𝑒𝑖𝑡

(𝑡 −𝑦)2 + 𝑥2
d𝑡 .

1) Déterminer l’ensemble de définition de 𝑓 .
2) Calculer 𝑓 .
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◻ Exercice 7 On pose, lorsque cela a un sens, 𝐹(𝑥) = ∫
+∞

0
𝑒
−𝑡2−

𝑥2

𝑡2 𝑑𝑡 .

Montrer que 𝐹 est définie sur R, de classe C 1 sur R⋆ et vérifie

∀𝑥 ∈ R⋆+ 𝐹 ′(𝑥) + 2𝐹(𝑥) = 0

En déduire une expression simple de 𝐹 .

◻ Exercice 8 Soit 𝑓 ∶ 𝑥 z→ ∫
+∞

0

𝑒−𝑡

𝑥 + 𝑡
d𝑡 définie sur R∗+.

1) La fonction 𝑓 est-elle continue? de classe C 1 ?
2) Déterminer un équivalent de 𝑓 (𝑥) en +∞.
3) Déterminer un équivalent de 𝑓 en 0, puis un développement asymptotique à deux termes.

◻ Exercice 9 Soit la fonction 𝑓 ∶ 𝑥 z→ ∫
+∞

0

1 − 𝑒−𝑥𝑡2

𝑡2
d𝑡 .

1) Montrer que 𝑓 est continue sur [0,+∞[, dérivable sur ]0,+∞[.
2) Expliciter 𝑓 ′(𝑥) et en déduire 𝑓 (𝑥).

On donne la valeur de l’intégrale de Gauss : ∫
∞

0
𝑒−𝑢

2
𝑑𝑢 =

√
𝜋

2
.

◻ Exercice 10 Soit 𝑓 ∶ 𝑥 z→ ∫
]0,+∞[

arctan(𝑥𝑡)
𝑡(1 + 𝑡2)

d𝑡 .

1) Montrer que 𝑓 est définie sur R.
2) Montrer que 𝑓 est de classe C 1 sur R, calculer 𝑓 ′(𝑥) pour 𝑥 ⩾ 0.
3) Montrer que : ∀ 𝑥 ⩾ 0 , 𝑓 (𝑥) = 𝜋

2 ln(1 + 𝑥). Que se passe-t-il pour 𝑥 ⩽ 0.

4) Montrer que : ∫
]0,+∞[

(arctan 𝑡
𝑡
)
2

d𝑡 = 𝜋 ln 2.

◻ Exercice 11 Soit la fonction 𝐹 ∶ 𝑥 z→ ∫
1

0
𝑡𝑥 ln(𝑡) ln(1 − 𝑡) d𝑡 .

1) Déterminer l’ensemble de définition de 𝐹 .
2) Étudier la continuité de 𝐹 et ses limites aux bornes.

3) Montrer que 𝐹(𝑥) =
+∞
∑
𝑛=1

1
𝑛(𝑥+𝑛+1)2 . En déduire 𝐹(0) et 𝐹(1).

◻ Exercice 12 On pose 𝑓 ∶ 𝑥 ↦ ∫
1

0

1
𝑡
ln(1 − 2𝑡 cos(𝑥) + 𝑡2) d𝑡 .

Étudier 𝑓 et l’expliciter.

◻ Exercice 13 On considère la fonction 𝑓 ∶ 𝑥 ↦ ∫
+∞

0
𝑒−𝑥𝑡

sin 𝑡
𝑡

d𝑡 .

1) Montrer que 𝑓 est définie sur R+ et de classe C 1 sur R+∗ . Expliciter 𝑓 ′ (𝑥), pour 𝑥 > 0.
2) A l’aide du critère spécial des séries alternées, en écrivant :

∀𝑥 ∈ R+ 𝑓 (𝑥) =
∞
∑
𝑛=0
∫
(𝑛+1)𝜋

𝑛𝜋
𝑒−𝑥𝑡

sin 𝑡
𝑡

d𝑡

montrer que 𝑓 est continue sur R+.

3) Retrouver alors la valeur de l’intégrale de Dirichlet : ∫
+∞

0

sin 𝑡
𝑡

d𝑡 = 𝜋
2

◻ Exercice 14 On pose 𝑓 ∶ 𝑥 ↦ ∫
𝜋

0
ln(𝑥 + cos 𝑡)𝑑𝑡
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1) Déterminer son ensemble de défiition.
2) Démontrer que 𝑓 est dérivable sur ]1,+∞[.
3) En déduire une expression simple de 𝑓 . On pourra poser 𝑢 = tan 𝑡

2 dans l’expression de 𝑓
′.

◻ Exercice 15 (Intégrale de Poisson)
On pose, pour 𝑥 réel, 𝐼 (𝑥) = ∫

𝜋

0
ln(1 − 2𝑥 cos(𝑡) + 𝑥2) d𝑡 .

1) Justifier la définition de 𝐼 (𝑥) et établir, pour 𝑥 non nul, 𝐼 (1
𝑥
) = 𝐼 (𝑥) − 2𝜋 ln ∣𝑥 ∣ .

2) Montrer que la fonction 𝐼 est de classe C 1 sur ]−1, 1[ et préciser 𝐼 ′ sur cet intervalle.
On pourra dans le calcul de 𝐼 ′ poser 𝑢 = tan 𝑡

2 .
3) En déduire la valeur de 𝐼 (𝑥) , pour tout réel 𝑥 .

◻ Exercice 16 Soit 𝐹(𝑥) = ∫
+∞

0

𝑒−𝑥𝑡√
𝑡 + 1

d𝑡 .

1) Étudier l’ensemble de définition D et la continuité de 𝐹 .
2) La fonction 𝐹 est-elle de classe C 1 sur D ?
3) Déterminer un équivalent simple quand 𝑥 tend vers 0 par valeurs supérieures de 𝐹(𝑥). On

donne la valeur de l’intégrale de Gauss : ∫
∞

0
𝑒−𝑢

2
𝑑𝑢 =

√
𝜋

2
.

4) Déterminer un équivalent simple de 𝐹(𝑥) quand 𝑥 tend vers +∞.

◻ Exercice 17 Pour 𝑥 > 0, on note Γ(𝑥) = ∫
+∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 .

1) Montrer que : 𝑥 z→ ∫]0, 𝜋4 [
𝑒
− 𝑥2

cos2(𝑡) d𝑡 +(∫
𝑥

0
𝑒−𝑡

2
d𝑡)

2

est constante sur R et en déduire la valeur

de Γ en 1
2

2) Montrer que 𝑔 ∶ 𝑥 z→ ∫
+∞

0

𝑒−𝑡√
𝑡
cos(𝑡𝑥) d𝑡 est développable en série entière sur R

◻ Exercice 18 Soit la fontion 𝑥 z→ 𝑓 (𝑥) = ∫
+∞

0

𝑒−𝑡 − 𝑒−𝑥𝑡
𝑡

d𝑡 . Donner son ensemble de définition

de 𝑓 , puis étudier la continuité et la dérivabilité de 𝑓 .

◻ Exercice 19 Soit 𝐹(𝑥) = ∫
+∞

0

sin 𝑡
𝑥2 + 𝑡2

d𝑡

1) Etudier l’ensemble de définition 𝐴 et la continuité de 𝐹 .
2) Déterminer un équivalent pour 𝑥 → +∞ de 𝐹(𝑥).
3) La fonction 𝐹 est-elle de classe C 1 sur 𝐴 ?

◻ Exercice 20 Soit 𝑓 (𝑥) = ∫
[1,+∞[

1
𝑡𝑥(1 + 𝑡)

d𝑡 .

1) Déterminer le domaine de définition de 𝑓 , étudier la continuité de 𝑓 .
2) Donner un équivalent simple de 𝑓 au voisinage de 0 et de +∞.

◻ Exercice 21 Soit 𝐹(𝑥) = ∫
+∞

0

sh (𝑡)
𝑡

𝑒−𝑥𝑡 d𝑡 .

1) Quel est le domaine de définition de 𝐹 ?
2) Étudier la continuité et la dérivabilité de 𝐹 .
3) Calculer 𝐹(𝑥).

◻ Exercice 22 Soit 𝐹(𝑥) = ∫
+∞

0

ln(𝑥2 + 𝑡2)
1 + 𝑡2

d𝑡 .
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1) Ensemble de définition de 𝐹 .
2) Etudier la continuité et la dérivabilité de 𝐹 .
3) Calculer 𝐹 ′(𝑥), puis 𝐹(𝑥).

◻ Exercice 23 Soit 𝑓 (𝑥) = ∫
+∞

𝑡=0

𝑒−𝑡
2𝑥

1 + 𝑡2
d𝑡 .

1) Trouver le domaine de définition de 𝑓 .
2) Montrer que 𝑓 est dérivable sur R+∗.
3) Calculer 𝑓 − 𝑓 ′ à l’aide de l’intégrale de Gauss.
4) Donner un équivalent simple de 𝑓 ′(𝑥) pour 𝑥 → +∞.

5) Montrer que 𝑓 (𝑥) =
√
𝜋

2
√
𝑥
−
√
𝜋

4𝑥
√
𝑥
+ 𝑜+∞(

1

𝑥
√
𝑥
).

6) Tracer la courbe de 𝑓 .

◻ Exercice 24 Soit 𝐹(𝑥) = ∫
+∞

0

1
𝑡𝑥+1 + 𝑡 + 1

d𝑡 .

1) Déterminer son ensemble de définition et étudier sa continuité.
2) Étudier sa monotonie.
3) Déterminer lim

𝑥→+∞
𝐹(𝑥).

4) Déterminer un équivalent de 𝐹(𝑥) en 0, en commençant par faire un changement de variable.

5) Retrouver ce résultat en commençant par calculer ∫
+∞

1

1
𝑡𝑥+1 + 𝑡

d𝑡 .

◻ Exercice 25 Pour 𝑥 ∈ R, on pose 𝐹(𝑥) = ∫
1

0
𝑡 𝑡

𝑥
d𝑡 .

1) Montrer que 𝐹 est définie sur R, croissante et continue.
2) Déterminer les limites de 𝐹 en −∞ et +∞.

3) Montrer que, pour 𝑥 > 0, 𝐹(𝑥) =
+∞
∑
𝑛=0

(−1)𝑛
(𝑛𝑥+1)𝑛+1 .

◻ Exercice 26 On pose 𝑓 (𝑥) = ∫
+∞

0

sin(𝑡)
𝑡 + 𝑥

d𝑡 et 𝑔(𝑥) = ∫
+∞

0

𝑒−𝑡𝑥

1 + 𝑡2
d𝑡

1) Montrer que 𝑓 et 𝑔 sont de classe C 2 sur des intervalles à déterminer
2) Chercher des équations différentielles vérifiées par 𝑓 et 𝑔.

3) En déduire que : ∀ 𝑥 ∈ R+, ∫
+∞

0

sin(𝑡)
𝑡 + 𝑥

d𝑡 = ∫
+∞

0

𝑒−𝑡𝑥

1 + 𝑡2
d𝑡 .

◻ Exercice 27 Déterminer lim
𝑎→0+
∫

1

0

√
𝑥

(1 − 𝑥)(1 + 𝑎𝑥)
𝑑𝑥 .

◻ Exercice 28 Pour 𝑥 > 0, on pose 𝑓 (𝑥) = ∫
+∞

0

sin(𝑡)
𝑒𝑥𝑡 − 1

d𝑡 .

1) Justifier l’existence de 𝑓 (𝑥) pour 𝑥 > 0.
2) Développer 𝑓 en série de fonctions rationnelles.

3) Montrer que : 𝑓 (𝑥) ∼
0

𝜋

2𝑥
.

4) Déterminer un équivalent de 𝑓 en +∞.

◻ Exercice 29 Calculer 𝐼 = ∫
𝜋

0
ln(𝑏 − cos 𝑡

𝑎 − cos 𝑡
) d𝑡 , 𝑎 > 1, 𝑏 > 1.

On pourra utiliser la fonction 𝑓 ∶ 𝑥 z→ ∫
𝜋

0
ln(𝑥 − cos 𝑡) d𝑡 .

◻ Exercice 30 Soit 𝑓 une application continue et intégrable de [1,+∞[ dans R. On pose

𝐹(𝑥) = ∫
+∞

1

𝑓 (𝑡)
𝑡𝑥

d𝑡
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1) Montrer que 𝐹 est continue sur R+.
2) Donner un équivalent de 𝐹(𝑥) quand 𝑥 tend vers +∞.

On pourramontrer que∫
+∞

2

𝑓 (𝑡)
𝑡𝑥

d𝑡 = 𝑜+∞ (
1
𝑥
) et déterminer un équivalent simple de∫

2

1

𝑓 (𝑡)
𝑡𝑥

d𝑡 ,

en commençant par faire un changement de variable adapté.

3) On suppose seulement que 𝑇 z→ ∫
𝑇

1
𝑓 (𝑡) d𝑡 a une limite finie en +∞ (et non que 𝑓 est

intégrable). Continuité de 𝐹 en 0?

◻ Exercice 31 On pose 𝐹(𝑥) = ∫
+∞

0

1√
(1 + 𝑡2)(1 + 𝑥𝑡2)

d𝑡 .

1) Déterminer l’ensemble de définition de 𝐹 , montrer que 𝐹 est continue sur cet ensemble.
2) Déterminer une relation entre 𝐹(𝑥) et 𝐹 ( 1𝑥 ).
3) Déterminer les limites de 𝐹 aux bornes de l’intervalle de définition.
4) Déterminer un équivalent de 𝐹 en 0 ; en déduire un équivalent de 𝐹 en +∞.

◻ Exercice 32 Déterminer un équivalent en 0 et en +∞ de 𝑓 (𝑥) = ∫
+∞

0

sin2(𝑥𝑡)
𝑡2(1 + 𝑡2)

d𝑡 .

◻ Exercice 33 Pour 𝑥 réel, on pose 𝜑(𝑥) = ∫
[0,+∞[

𝑒−𝑥𝑡

1 + 𝑡
d𝑡 .

1) Déterminer l’intervalle 𝐼 de R sur lequel la fonction 𝜑 est définie.

Montrer que 𝜑 est de classe C 1 sur 𝐼 .

Etudier le sens de variation de 𝜑 ′. En déduire que 𝜑 est convexe sur 𝐼 .
2) a) Déterminer une équation différentielle vérifiée par 𝜑 sur 𝐼 .

b) En déduire que 𝜑 est de classe C∞ sur 𝐼
c) Déterminer la limite de 𝜑 en +∞. En déduire la limite de 𝜑 ′ en +∞.
d) Pour 𝑥 ∈ 𝐼 et 𝑘 ∈ N∗, exprimer 𝜑(𝑥) − 𝜑(𝑘)(𝑥) sous forme d’une somme, et en déduire la

limite de 𝜑(𝑘) en +∞.

3) a) Montrer que : ∀𝑥 ∈ 𝐼 , 𝜑(𝑥) = 1
𝑥 −

1
𝑥 ∫[0,+∞[

𝑒−𝑥𝑡

(1 + 𝑡)2
d𝑡 .

b) Montrer que : lim
𝑥→+∞

(∫
[0,+∞[

𝑒−𝑥𝑡

(1 + 𝑡)2
d𝑡) = 0.

En déduire un équivalent de 𝜑(𝑥) au voisinage de +∞.
c) Montrer que𝜑 admet un développement asymptotique (que l’on déterminera) au voisinage

de +∞, à la précision 1
𝑥3 .

4) Montrer que : ∀𝑥 ∈ 𝐼 , 𝜑(𝑥) = 𝑒𝑥 ∫
[𝑥,+∞[

𝑒−𝑡

𝑡
d𝑡 .

En déduire que : 𝜑(𝑥) ∼
0+
− ln(𝑥) . Tracer le graphe de 𝜑 .

◻ Exercice 34 Montrer que 𝜑 ∶ 𝑥 z→ ∫
+∞

0

cos𝑢
𝑢2 + 𝑥2

d𝑢 est de classe C 1 sur ]0,+∞[.

◻ Exercice 35 Soit 𝑓 (𝑥) = ∫
+∞

0

1
1 + 𝑡𝑥

d𝑡 .

1) Déterminer l’ensemble de définition 𝐼 de 𝑓 .
2) Montrer que : ∀𝑥 ∈ 𝐼 , 𝑓 (𝑥) = 1

𝑥−1 𝑓 (
𝑥
𝑥−1).

3) En déduire un équivalent de 𝑓 en 1.
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◻ Exercice 36 Calcul de l’intégrale de Gauss 𝐼 = ∫
+∞

0
𝑒−𝑡

2
d𝑡 .

1) On pose 𝐹(𝑥) = ∫
+∞

0

𝑒−𝑥(1+𝑡
2)

1 + 𝑡2
d𝑡 pour 𝑥 ⩾ 0. Montrer que 𝐹 est continue sur [0,+∞[, de classe

C 1 sur ]0,+∞[.

Déterminer la limite de 𝐹 en +∞.
2) Montrer que : 𝐹 ′(𝑥) = −𝐼 𝑒−𝑥√

𝑥
et que 𝐹(𝑥) = 𝜋

2 − 𝐼 ∫
𝑥

0

𝑒−𝑢√
𝑢
d𝑢 pour tout 𝑥 strictement positif.

3) Montrer que :∫
+∞

0

𝑒−𝑢√
𝑢
d𝑢 = 2𝐼 , et en déduire, à l’aide d’un passage à la limite dans l’expression

de 𝐹 la valeur de 𝐼 .

◻ Exercice 37 Soit 𝑓 (𝑥) = ∫
+∞

0

𝑒−𝑥𝑡
2

1 + 𝑡2
d𝑡 .

1) Déterminer l’ensemble de définition 𝐼 de 𝑓 ; montrer que 𝑓 est continue sur 𝐼 .

2) Soit 𝑘 = ∫
+∞

0
𝑒−𝑢

2
d𝑢. Montrer que 𝑓 satisfait à l’équation différentielle : 𝑦′(𝑥) −𝑦(𝑥) = − 𝑘√

𝑥

sur ]0,+∞[.

En déduire une nouvelle expression de 𝑓 .

En étudiant la limite de 𝑓 en +∞, déterminer 𝑘 .
3) Tracer l’allure du graphe de 𝑓 sur [0,+∞[.

◻ Exercice 38 On pose 𝑓 (𝑥) = ∫
+∞

0

𝑒−𝑥
2𝑡2

1 + 𝑡2
𝑑𝑡 .

1) Donner le domaine de définition de 𝑓 .
2) Étudier les variations de 𝑓 .
3) Trouver la limite de 𝑓 quand 𝑥 tend vers +∞.

◻ Exercice 39 Soit la fonction 𝑓 définie par : 𝑓 ∶ 𝑥 ↦ ∫
+∞

0
sh (𝑥𝑡)𝑒−𝑡𝑑𝑡 .

1) Déterminer l’ensemble de définition de 𝑓 . Etudier la continuité et la dérivabilité de 𝑓 .
2) Calculer 𝑓 .

◻ Exercice 40 Ensemble de définition et calcul de : 𝑓 (𝑥) = ∫
1

0

𝑡𝑥 − 1
ln 𝑡

d𝑡 .

◻ Exercice 41 Soit Γ(𝑠) = ∫
+∞

0
𝑡𝑠−1𝑒−𝑡 d𝑡 ; Γ (12) =

√
𝜋
2 .

1) Déterminer le rayon de convergence de ∑( (2𝑛)!22𝑛(𝑛!)2𝑥
2𝑛), puis sa somme. On pourra utiliser le

développement en série entière de 𝑥 z→ 1√
1+𝑥 .

2) Soit 𝐹(𝑥) =
+∞
∑
𝑛=0

𝑥2𝑛

(𝑛!)2 , 𝑔𝑠(𝑡) = 𝐹(𝑡)𝑒
− 𝑡
𝑠 pour 𝑠 ∈ ]0, 12].

Montrer que 𝑔𝑠 est intégrable sur [0,+∞[.
3) Montrer que 𝑔𝑠 est développable en série entière.

◻ Exercice 42 Soit la fonction de variable réelle 𝑓 définie par : 𝑓 (𝑥) = ∫
+∞

0

cos(𝑡𝑥)
1 + 𝑡2

d𝑡 .

1) Déterminer l’ensemble de définition de 𝑓 ; montrer que 𝑓 est continue sur cet ensemble.

2) Pour tout 𝑥 > 0, pour tout entier naturel 𝑛, on pose 𝑓𝑛(𝑥) = ∫
𝑛

0

cos(𝑡𝑥)
1 + 𝑡2

d𝑡 .
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a) Montrer que pour tout 𝑛, 𝑓𝑛 est de classe C 1 sur ]0,+∞[, et que :

∀ 𝑥 > 0 , 𝑓 ′𝑛 (𝑥) =
1
𝑥
(𝑛 cos(𝑛𝑥)

1 +𝑛2
−∫

𝑛

0

1 − 𝑡2
(1 + 𝑡2)2

cos(𝑥𝑡) d𝑡)

b) Montrer que la suite (𝑓 ′𝑛 ) converge simplement sur ]0,+∞[ vers une fonction 𝑔 qu’on
précisera, puis que, si 𝑎 > 0, (𝑓 ′𝑛 ) converge uniformément vers 𝑔 sur [𝑎,+∞[.

Que peut-on en déduire pour 𝑓 ?
c) Montrer que 𝑥 z→ 𝑥 𝑓 ′(𝑥) est de classe C 1 sur ]0,+∞[, calculer la dérivée de cette appli-

cation.

Déduire de ce qui précède que 𝑓 est de classe C 2 sur ]0,+∞[, et un équation différentielle
vérifiée par 𝑓

d) Résoudre cette équation, et déterminer 𝑓 .

◻ Exercice 43 On pose 𝑓 (𝑥) = ∫
𝜋
2

0
ln(𝑥2 − sin2(𝑡)) d𝑡 .

1) Montrer que 𝑓 est de classe C 1 sur ]1,+∞[ et calculer 𝑓 ′(𝑥).

On pourra poser 𝑢 = tan(𝑡) pour calculer l’intégrale définissant 𝑓 ′(𝑥).
2) Déterminer l’ensemble de définition de 𝑓 .

3) On veut calculer 𝐼 = ∫
𝜋
2

0
ln(cos 𝑡)𝑑𝑡 et 𝐽 = ∫

𝜋
2

0
ln(sin 𝑡)𝑑𝑡 .

Vérifier que 𝐼 = 𝐽 et en déduire la valeur de 𝐼 .
4) a) Justifier que ch réalise une bijection de ]0,+∞[ dans ]1,+∞[. On note argch sa bijection

réciproque.
b) Montrer que argch est de classe C 1 et calculer sa dérivée.

5) Calculer lim
𝑥→1
𝑥>1

𝑓 (𝑥), puis 𝑓 (𝑥) pour 𝑥 > 1.

6) Donner un équivalent de 𝑓 en +∞.

◻ Exercice 44 Soit la fonction 𝑓 définie par 𝑓 (𝑥,𝑦) = ∫
+∞

0

𝑒−𝑡 − 𝑒−𝑥𝑡 cos(𝑦𝑡)
𝑡

d𝑡 .

1) Montrer que 𝑥 z→ 𝑓 (𝑥, 0) est de classe C 1 sur ]0,+∞[.
En déduire la valeur de 𝑓 (𝑥,𝑦) sur ]0,+∞[×R.

2) Montrer que 𝑦 z→ 𝑓 (0,𝑦) est continue sur R.

On pourra utiliser une intégration par partie.

◻ Exercice 45 Soit 𝑎 < 𝑏 et 𝑐 < 𝑑 . Soit 𝑓 une application continue sur [𝑎,𝑏]× [𝑐,𝑑], à valeurs dans
R. On veut démontrer le théorème de Fubini qui affirme que

∫
𝑏

𝑎
(∫

𝑑

𝑐
𝑓 (𝑢, 𝑡)𝑑𝑡)𝑑𝑢 = ∫

𝑑

𝑐
(∫

𝑏

𝑎
𝑓 (𝑢, 𝑡)𝑑𝑢)𝑑𝑡

Pour tout (𝑥, 𝑡) ∈ [𝑎,𝑏] × [𝑐,𝑑], on pose : 𝜑(𝑥, 𝑡) = ∫
𝑥

𝑎
𝑓 (𝑢, 𝑡)𝑑𝑢.

1) Montrer que pour tout 𝑥 ∈ [𝑎,𝑏], l’application 𝑡 ↦ 𝜑(𝑥, 𝑡) est continue sur [𝑐,𝑑].

On pose alors, pour tout 𝑥 ∈ [𝑎,𝑏] :𝜓(𝑥) = ∫
𝑑

𝑐
𝜑(𝑥, 𝑡)𝑑𝑡 .

2) Montrer que𝜓 est de classe C 1 sur [𝑎,𝑏] ; préciser𝜓 ′.
3) En déduire :

∀𝑥 ∈ [𝑎,𝑏], ∫
𝑥

𝑎
(∫

𝑑

𝑐
𝑓 (𝑢, 𝑡)𝑑𝑡)𝑑𝑢 = ∫

𝑑

𝑐
(∫

𝑥

𝑎
𝑓 (𝑢, 𝑡)𝑑𝑢)𝑑𝑡 .

4) Conclure
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CHAPITRE 18

Calcul différentiel

A Dérivées partielles, différentiabilité, classe C 𝑘

◻ Exercice 1 Soit 𝑓 ;R2 → R la fonction définie par

𝑓 ∶ 𝑥 ↦
⎧⎪⎪⎨⎪⎪⎩

𝑥𝑦3

𝑥2+𝑦2 si (𝑥,𝑦) /= (0, 0)
0 si (𝑥,𝑦) = (0, 0)

La fonction𝑓 est-elle différentiable sur R2 ? de classe C 1 ?

◻ Exercice 2 Étudier les fonctions suivantes (continuité, prolongement par continuité, existence
de dérivées partielles, différentiabilité, classe C 1).

a) (𝑥,𝑦)z→ 𝑥2𝑦
𝑥4+𝑦2 , b) (𝑥,𝑦)z→ 𝑥2 sin (

𝑦
𝑥 ) , c) (𝑥,𝑦)z→

𝑥3−𝑦3
𝑥2+𝑦2 ,

d) (𝑥,𝑦)z→ 1−𝑒−𝑥𝑦
2

𝑦 , e) (𝑥,𝑦)z→ 𝑥𝑦√
𝑥2+2𝑦2

, f) (𝑥,𝑦)z→ 𝑥2𝑦
𝑥2+𝑦2

◻ Exercice 3 Soient 𝑓 ∶ R2 Ð→ R, 𝑔 ∶ R2 Ð→ R et ℎ ∶ R Ð→ R telles que :

∀ (𝑥,𝑦) ∈ R2 , 𝑔(𝑥,𝑦) = 𝑓 (𝑦,𝑥) , ∀ 𝑥 ∈ R , ℎ(𝑥) = 𝑓 (𝑥, 𝑥)

On suppose que 𝑓 est différentiable sur R2. Montrer que 𝑔 (resp. ℎ) est différentiable sur R2 (resp.
dérivable sur R), et calculer ses dérivées partielles (sa dérivée).

◻ Exercice 4 Soit 𝑓 une application continue sur R. Soit 𝐹 ∶ R2 Ð→ R telle que

∀ (𝑥,𝑦) ∈ R2 , 𝐹(𝑥,𝑦) = ∫
𝑦

𝑥
𝑓 (𝑡) d𝑡

Montrer que 𝐹 est de classe C 1 sur R2, écrire 𝑑𝐹(𝑥,𝑦).

◻ Exercice 5 Montrer que l’application 𝑓 ∶ (𝑥,𝑦)z→
+∞
∑
𝑛=1

sin(𝑛𝑥) sin(𝑛𝑦)
𝑛4 est de classe C 2 sur R2.

◻ Exercice 6 Soit 𝑓 ∶ R2 Ð→ R définie par :

𝑓 (0, 0) = 0 et 𝑓 (𝑥,𝑦) = (𝑥2 +𝑦2) sin 1√
𝑥2 +𝑦2

si (𝑥,𝑦) ≠ (0, 0) .

Etudier la continuité de 𝑓 en (0, 0) . La fonction 𝑓 est-elle différentiable en (0, 0)? est-elle de classe
C 1 sur R2 ?
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◻ Exercice 7 Soit (𝐸, ( ∣ )) un espace euclidien, et 𝑢 un endomorphisme de 𝐸.

Etudier la différentiabilité de 𝑓 ∶ 𝑥 z→ (𝑢(𝑥)∣𝑥) en 𝑥 ∈ 𝐸, et déterminer 𝑑 𝑓𝑥 . Que dire si 𝑢 est un
endomorphisme symétrique de 𝐸 ?

◻ Exercice 8 Soit 𝑓 une application de classe C 2 sur R à valeurs dans R.

Soit 𝐹 une application définie sur R2/{(0, 0)} par :

∀(𝑥,𝑦) ∈ R2/{(0, 0)} , 𝐹(𝑥,𝑦) = 𝑓 (𝑥
2 +𝑦2) − 𝑓 (0)
𝑥2 +𝑦2

1) Déterminer lim
(𝑥,𝑦)→(0,0)

𝐹(𝑥,𝑦).

2) a) Montrer que 𝐹 est différentiable en (0, 0) et déterminer 𝑑𝐹(0,0).
b) Montrer que 𝐹 est de classe C 1 sur R2.

◻ Exercice 9 Soit 𝑓 ∶ R2 → R2 définie par 𝑓 ∶ (𝑥,𝑦)↦ (𝑢(𝑥,𝑦), 𝑣(𝑥,𝑦)).

On suppose que 𝑢 et 𝑣 sont de classe C 2 sur R2.

1) Ecrire la matrice jacobienne 𝐽(𝑥,𝑦) de 𝑓 .
2) On suppose que pour tout (𝑥,𝑦) de R2, 𝐽(𝑥,𝑦) est une matrice de rotation et on pose

𝐽(𝑥,𝑦) = ( 𝐶(𝑥,𝑦) −𝑆(𝑥,𝑦)
𝑆(𝑥,𝑦) 𝐶(𝑥,𝑦) )

Montrer que 𝑆 et 𝐶 sont constantes.
3) Déterminer 𝑢(𝑥,𝑦) et 𝑣(𝑥,𝑦).
◻ Exercice 10 Soient 𝛼 et 𝛽 deux réels tels que 𝛼 < 𝛽 < 1.

L’objet de cet exercice est l’étude de la fonction 𝑓 définie pour tout 𝑥 et 𝑦 strictement positifs, 𝑥 /= 𝑦,
par 𝑓 (𝑥,𝑦) = 𝑥𝛼−𝑦𝛼

𝑥𝛽−𝑦𝛽 .

1) a) Soit 𝛼 > 1 ; montrer que la fonction 𝜑 ∶ 𝑡 z→ 1−𝑡𝛼
1−𝑡 est prolongeable en une application de

classe C 1 sur ]0,+∞[.
b) Etudier les variations de 𝜑 .

2) Soit𝑈 =]0,+∞, [×]0,+∞, [ ;

a) Montrer que la fonction 𝑓 définie sur𝑈 par :

𝑓 (𝑥,𝑦) =
⎧⎪⎪⎨⎪⎪⎩

𝑥𝛼−𝑦𝛼
𝑥𝛽−𝑦𝛽 si 𝑥 /= 𝑦
𝛼
𝛽𝑥

𝛼−𝛽 si 𝑥 = 𝑦

est de classe C 1 sur𝑈 .
b) Montrer que : ∀(𝑥,𝑦) ∈𝑈 , ∀𝜆 > 0 , 𝑓 (𝜆𝑥, 𝜆𝑦) = 𝜆𝛼−𝛽 𝑓 (𝑥,𝑦).

3) En déduire que : ∀(𝑥,𝑦) ∈𝑈 , 𝑥 𝜕𝑓𝜕𝑥 (𝑥,𝑦) +𝑦
𝜕𝑓
𝜕𝑦 (𝑥,𝑦) = (𝛼 − 𝛽)𝑓 (𝑥,𝑦).

Rechercher les points critiques de 𝑓 sur𝑈 .
4) Quel est l’image 𝑓 (𝑈 )?
◻ Exercice 11 Démontrer que 𝑓 ∶M𝑛(R) →M𝑛(R) définie par 𝑓 (𝐴) = 𝐴3 est différentiable sur
M𝑛(R) et déterminer sa différentielle.

◻ Exercice 12
1) Montrer que GL𝑛(R) est un ouvert de M𝑛(R).
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2) Montrer que l’application 𝑓 ∶ 𝐴 ↦ 𝐴−1 est de classeC 1 sur GL𝑛(R) et déterminer la différentielle
de 𝑓 en 𝐴.

On pourra commencer par montrer qu’il existe une fonction 𝜀 ∶ 𝑉 ⊂ M𝑛(R) Ð→ M𝑛(R), telle
que :

∀𝐻 ∈𝑉 , (𝐼𝑛 +𝐻)−1 = 𝐼𝑛 −𝐻 + ∥𝐻∥𝜀(𝐻)

avec lim
𝐻→0

𝜀(𝐻) = 0M𝑛(R).

◻ Exercice 13 Soit 𝑓 une application de classe C 1 sur R à valeurs dans R. On définit :

∀ (𝑥,𝑦) ∈ R2 , 𝑥 /= 0 , 𝐹(𝑥,𝑦) = 1
𝑥 ∫

𝑥𝑦

𝑥
𝑓 (𝑡) d𝑡

Montrer qu’on peut définir 𝐹(0,𝑦) de telle manière que 𝐹 soit continue sur R2

Montrer qu’alors 𝐹 est de classe C 1 sur R2, écrire 𝑑𝐹(𝑥,𝑦).

◻ Exercice 14 Soit 𝑓 une application de R2 dans R et 𝛼 ∈ R.
On dit que 𝑓 est homogène de degré 𝛼 si :

∀ (𝑥,𝑦) ∈ R2/{(0, 0)} , ∀ 𝑡 ∈]0,+∞[ , 𝑓 (𝑡𝑥, 𝑡𝑦) = 𝑡𝛼 𝑓 (𝑥,𝑦)

On suppose que 𝑓 est différentiable sur R2/{(0, 0)}.
1) Montrer que si 𝑓 est homogène de degré 𝛼 , alors :

∀ (𝑥,𝑦) ∈ R2/{(0, 0)} , 𝑥 𝜕𝑓
𝜕𝑥
(𝑥,𝑦) +𝑦 𝜕𝑓

𝜕𝑦
(𝑥,𝑦) = 𝛼 𝑓 (𝑥,𝑦)

2) Examiner la réciproque.
3) Déterminer les fonctions 𝑓 homogènes différentiables sur R2/{(0, 0)} telles que :

∀ (𝑥,𝑦) ∈ R2/{(0, 0)} , 𝑥 𝜕𝑓
𝜕𝑥
(𝑥,𝑦) +𝑦 𝜕𝑓

𝜕𝑦
(𝑥,𝑦) =

√
𝑥4 + 2𝑦4

◻ Exercice 15
1) Montrer que 𝑓 ∶𝑀 ↦𝑀2 est de classe C∞ sur M𝑛(R) et expliciter d𝑓 (𝐴) , pour 𝐴 ∈M𝑛(R).
2) Montrer que, si 𝐴 est diagonalisable, à valeurs propres strictement positives, alors d𝑓 (𝐴) est

un automorphisme de M𝑛(R).
◻ Exercice 16 Montrer que l’application 𝑓 ∶𝑀 ↦ det𝑀 est différentiable sur M𝑛(R) et que :

∀(𝑀,𝐻) ∈M𝑛(R) d𝑓𝑀(𝐻) = tr(𝑀̃𝐻) (où 𝑀̃ = Com(𝑀)⊺).

On pourra commencer en étudiant le cas 𝑛 = 2, en prenant 𝐻 = ( ℎ11 ℎ12
ℎ21 ℎ22

).

◻ Exercice 17 Soit 𝑓 un endomorphisme d’un espace euclidien 𝐸. On pose, sur 𝐸 ∖ {0},

𝑞(𝑥) = ∥𝑓 (𝑥)∥
2

∥𝑥∥2

Montrer que 𝑞 est différentiable, et déterminer sa différentielle en 𝑥 .

◻ Exercice 18 Soit 𝐸 euclidien et 𝑎 un endomorphisme symétrique. On pose, pour 𝑥 ∈ 𝐸 euclidien,
𝑓 (𝑥) = 1

2(𝑎(𝑥)∣𝑥) − (𝑏∣𝑥)
Calculer 𝑓 (𝑥 +𝑢)− 𝑓 (𝑥), montrer que 𝑓 admet des dérivées partielles, calculer le gradient de 𝑓 en 𝑥 .
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◻ Exercice 19 Déterminer la classe de l’application 𝑓 ∶ R2 → R définie par

𝑓 (𝑥,𝑦) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥𝑦(𝑥2 −𝑦2)
𝑥2 +𝑦2

si(𝑥,𝑦) ≠ (0, 0)

0 si(𝑥,𝑦) = (0, 0)

◻ Exercice 20 On pose𝑈 = {(𝑥,𝑦) ∈ R2 , 𝑥𝑦 ≠ 1}.

Soit 𝑓 la fonction de𝑈 dans R définie par :

𝑓 (𝑥,𝑦) = arctan𝑥 + arctan𝑦 − arctan 𝑥 +𝑦
1 − 𝑥𝑦

.

Calculer les dérivées partielles de 𝑓 . Conclure.

◻ Exercice 21 Soit 𝑈 = {(𝑥,𝑦) ∈ R2 ; 𝑥 > 0 et 𝑦 > 0} et 𝑉 = {(𝑢, 𝑣) ∈ R2 ; 𝑣 > 0}. On pose
𝜑 ∶𝑈 →𝑉 définie par 𝜑 ∶ (𝑥,𝑦)↦ (𝑥2 −𝑦2, 2𝑥𝑦).

Soit 𝐹 ∶ R2 z→ R on pose 𝑓 = 𝐹 ○𝜑 .

1) Étudier les qualités de 𝜑 .

2) Calculer Δ𝑓 (𝑥,𝑦) = 𝜕2 𝑓
𝜕𝑥2 (𝑥,𝑦) +

𝜕2 𝑓
𝜕𝑦2 (𝑥,𝑦) en fonction des dérivées partielles de 𝐹 .

◻ Exercice 22 Soit 𝑓 ∶ R2 z→ R une application de classeC 2 sur R, et soit 𝐹 ∶]0,+∞[×]−𝜋, 𝜋[→ R
définie par 𝐹 ∶ (𝜌,𝜃)↦ 𝑓 (𝜌 cos(𝜃), 𝜌 sin(𝜃)).
Calculer lΔ𝑓 (𝑥,𝑦) = 𝜕2 𝑓

𝜕𝑥2 (𝑥,𝑦) +
𝜕2 𝑓
𝜕𝑦2 (𝑥,𝑦) en fonction des dérivées partielles de 𝐹 .

◻ Exercice 23 Soit 𝐸 = C∞(R2,R). Pour 𝑓 ∈ 𝐸, on définit Ω𝑎(𝑓 ) =
𝜕𝑓

𝜕𝑥
+ 𝑎 𝜕𝑓

𝜕𝑦
.

1) Montrer que Ω𝑎 est un endomorphisme de 𝐸.
2) Trouver le noyau de Ω𝑎 (on pourra poser 𝑢 = 𝑥, 𝑣 = 𝑦 − 𝑎𝑥 ).
3) Pour 𝑛 entier naturel, exprimer Ω𝑛𝑎 à l’aide des dérivées partielles de 𝑓 .

◻ Exercice 24 Soit ∑𝑎𝑛𝑧𝑛 une série entière de rayon de convergence 𝑅 > 0. On note 𝐷 le disque
ouvert de centre (0, 0) et de rayon 𝑅 et 𝑓 la fonction définie sur 𝐷 par

𝑓 ∶ (𝑥,𝑦)↦
∞
∑
𝑛=0

𝑎𝑛(𝑥 + 𝑖𝑦)𝑛

Montrer que 𝑓 est de classe C∞ sur 𝐷 .

B Équations aux dérivées partielles

◻ Exercice 25 Résoudre les équations aux dérivées partielles suivantes (on donnera les solutions
différentiables dans le cas des équations d’ordre 1 et les solutions de classe C 2 dans le cas des équa-
tions d’ordre 2 ; on utilisera le changement de variable indiqué) :

1)
𝜕𝑓

𝜕𝑥
− 𝜕𝑓
𝜕𝑦
+ 3(𝑥 −𝑦)𝑓 (𝑥,𝑦) = 0 , (𝑢 = 𝑥 −𝑦, 𝑣 = 𝑥 +𝑦, 𝑥 > 𝑦)

2) 2 𝜕𝑓𝜕𝑥 −
𝜕𝑓
𝜕𝑦 = 0, 𝑢 = 𝑥 +𝑦 , 𝑣 = 𝑥 + 2𝑦.

3) 𝑥2 𝜕
2 𝑓
𝜕𝑥2 −𝑦2

𝜕2 𝑓
𝜕𝑦2 = 0, 𝑢 = 𝑥𝑦, 𝑣 =

𝑥
𝑦 avec {

𝑥 > 0
𝑦 > 0 .
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4) 𝑥 𝜕𝑓𝜕𝑥 +𝑦
𝜕𝑓
𝜕𝑦 =
√
𝑥2 +𝑦2, en passant en polaires sur ]0,+∞[×R.

5) 2𝑥𝑦 𝜕𝑓𝜕𝑥 + (1 +𝑦2)
𝜕𝑓
𝜕𝑦 = 0, 𝑥 =

𝑢2+𝑣2
2 , 𝑦 = 𝑢𝑣 , 𝑥 > 0.

6) 𝜕2 𝑓
𝜕𝑥2 −

𝜕2 𝑓
𝜕𝑦2 − 2

𝜕𝑓
𝜕𝑥 + 𝑓 = 0, en faisant le changement de variables 𝑢 = 𝑥 +𝑦, 𝑣 = 𝑥 −𝑦.

◻ Exercice 26 Trouver les fonctions 𝑓 de classe C 2 sur R telles que la fonction 𝜑 ∶ (𝑥,𝑦)↦ 𝑓 (𝑦
𝑥
)

définie sur R∗ × R vérifie
𝜕2𝜑

𝜕𝑥2
+ 𝜕

2𝜑

𝜕𝑦2
= 0.

◻ Exercice 27 Trouver les applications 𝑓 de classe C 1 sur le demi-plan R∗+ × R vérifiant :

𝑥
𝜕𝑓

𝜕𝑦
−𝑦 𝜕𝑓

𝜕𝑥
= 𝑥 +𝑦 + 𝑓 (𝑥,𝑦)

On pourra passer en coordonnées polaires.

◻ Exercice 28 Résoudre l’équation aux dérivées partielles :

∀(𝑥,𝑦) ∈𝑈 , 𝑥
𝜕𝑓

𝜕𝑦
(𝑥,𝑦) −𝑦 𝜕𝑓

𝜕𝑥
(𝑥,𝑦) = 𝑎𝑓 (𝑥,𝑦)

où 𝑎 est un réel et𝑈 = R∗+ × R. On pourra passer en coordonnées polaires.

◻ Exercice 29 Soit 𝐷 = {(𝑥, 0) ∈ R2 ; 𝑥 < 0}. Déterminer les applications 𝑓 ∈ C 1(R2 ∖𝐷,R) telles
que :

𝑥
𝜕𝑓

𝜕𝑥
(𝑥,𝑦) +𝑦 𝜕𝑓

𝜕𝑦
(𝑥,𝑦) =

√
𝑥2 +𝑦2

◻ Exercice 30 Soient 𝑏,𝑐 ∈ R et (𝐸) 𝜕2𝑓

𝜕𝑥2
+ 𝑏 𝜕

2𝑓

𝜕𝑥𝜕𝑦
+ 𝑐 𝜕

2𝑓

𝜕𝑦2
= 0 où l’inconnue 𝑓 est une fonction

de classe C 2 de R2 vers R.

1) On suppose que 𝑋 2 +𝑏𝑋 + 𝑐 a deux racines réelles 𝜆 et 𝜇 éventuellement confondues. Montrer
que

(𝐸)⇔ ( 𝜕
𝜕𝑥
− 𝜆 𝜕

𝜕𝑦
) ○ ( 𝜕

𝜕𝑥
− 𝜇 𝜕

𝜕𝑦
)(𝑓 ) = 0

où 𝜕
𝜕𝑥 désigne l’application linéaire C 1(R2,R) ∋ 𝑓 ↦ 𝜕𝑓

𝜕𝑥 ∈ C 0(R2,R) (idem mut. mut. pour 𝜕
𝜕𝑦 )

2) On suppose que 𝜆 /= 𝜇. On pose 𝑋 = 𝑥 − 𝜆𝑦, 𝑌 = 𝑥 − 𝜇𝑦. Montrer qu’on définit bien ainsi
une bijection de R2 dans lui-même, de classe C 2 ainsi que sa réciproque, et qu’en posant 𝐹 ∶
(𝑋,𝑌)↦ 𝑓 (𝑥,𝑦), on a :

(𝐸)⇔ 𝜕2𝐹

𝜕𝑋 𝜕𝑌
= 0

Résoudre (𝐸).
3) On suppose que 𝜆 = 𝜇. Montrer qu’en posant 𝑋 = 𝑥 − 𝜆𝑦, 𝑌 = 𝑥 − 𝜈𝑦 avec 𝜈 /= 𝜆, et 𝐹 ∶ (𝑋,𝑌)↦

𝑓 (𝑥,𝑦), on a :

(𝐸)⇔ 𝜕2𝐹

𝜕𝑋 2
= 0

Résoudre (𝐸).
4) On suppose que 𝑋 2 +𝑏𝑋 + 𝑐 a deux racines imaginaires conjuquées 𝛼 ± 𝑖𝛽 . Montrer que

(𝐸)⇔ (( 𝜕
𝜕𝑥
− 𝛼 𝜕

𝜕𝑦
)2 + 𝛽2 𝜕

2

𝜕𝑦2
)(𝑓 ) = 0
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où ( 𝜕𝜕𝑥 − 𝛼
𝜕
𝜕𝑦 )2 = (

𝜕
𝜕𝑥 − 𝛼

𝜕
𝜕𝑦 ) ○ (

𝜕
𝜕𝑥 − 𝛼

𝜕
𝜕𝑦 )

Donner un changement de variables tel que

(𝐸)⇔ 𝜕2𝐹

𝜕𝑋 2
+ 𝜕

2𝐹

𝜕𝑌 2
= 0

(on ne demande pas de résoudre (𝐸) dans ce dernier cas)

C Problèmes d’extremum

◻ Exercice 31 Déterminer les extremas des fonctions suivantes sur le domaine 𝐷 stipulé.

𝑎) 𝑓 (𝑥,𝑦) = 𝑥 +𝑦 − 𝑥2 − 𝑥𝑦 −𝑦2 𝐷 = {(𝑥,𝑦) ∈ R2 ; 0 ⩽ 𝑥 , 0 ⩽ 𝑦 , 𝑥 +𝑦 ⩽ 1}
𝑏) 𝑓 (𝑥,𝑦) = 𝑥2 + 𝑥𝑦 +𝑦2 − 2𝑥 −𝑦 𝐷 = R2

𝑐) 𝑓 (𝑥,𝑦) = 𝑥4 +𝑦4 − 2𝑥2 + 4𝑥𝑦 − 2𝑦2 𝐷 = R2

𝑑) 𝑓 (𝑥,𝑦) = 𝑥3 +𝑦3 − 3𝑥𝑦 𝐷 = R2

𝑒) 𝑓 (𝑥,𝑦) = 𝑥𝑒𝑦 +𝑦𝑒𝑥 𝐷 = R2

𝑓 ) 𝑓 (𝑥,𝑦) = 𝑥2 + 2𝑦2 − 𝑥 𝐷 = {(𝑥,𝑦) ∈ R2 ; 𝑥2 +𝑦2 ⩽ 1}
𝑔) 𝑓 (𝑥,𝑦) = 𝑥2 + 𝑥𝑦 +𝑦2 − 3𝑥 − 6𝑦 𝐷 = R2

ℎ) 𝑓 (𝑥,𝑦) = sin𝑥 + sin𝑦 + cos(𝑥 +𝑦) 𝐷 =]0, 𝜋[2
𝑖) 𝑓 (𝑥,𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑥 − 12𝑦 𝐷 = R2

𝑗) 𝑓 (𝑥,𝑦) = 𝑥 +𝑦
(1 + 𝑥2)(1 +𝑦2)

𝐷 = [0, 1]2

𝑘) 𝑓 (𝑥,𝑦, 𝑧) = 𝑥2 +𝑦2 + 𝑧2 − 2𝑥𝑦𝑧 𝐷 = R3

◻ Exercice 32 Déterminer le minimum de la somme des distances d’un point 𝑀 à trois points
non alignés 𝐴, 𝐵 et 𝐶 du plan euclidien.

◻ Exercice 33 Un bâton de longueur ℓ est cassé en trois morceaux de longueur 𝑥,𝑦, 𝑧. Trouver
𝑥,𝑦 et 𝑧 pour que le produit 𝑥𝑦𝑧 soit maximum.

◻ Exercice 34 Déterminer les triangles d’aire maximum inscrits dans un cercle de diamètre 𝑑 .

◻ Exercice 35 Parmi tous les parallélépipèdes rectangles de surface donnée 𝑆 , quel est celui dont
le volume est maximum?

◻ Exercice 36 Soit 𝑛 ⩾ 2 et 𝑓 ∶ R𝑛 → R, (𝑥1, . . . , 𝑥𝑛)↦ 𝑥1.𝑥2. . . . .𝑥𝑛 .

On note Γ = {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛+, 𝑥1 + . . . + 𝑥𝑛 = 1}.

Démontrer que 𝑓 admet unmaximumglobal sur Γ et le déterminer. En déduire l’inégalité arithmético-
géométrique : pour tout (𝑥1, , 𝑥𝑛) ∈ R𝑛+ , on a

𝑛

∏
𝑖=1
𝑥
1/𝑛
𝑖 ⩽ 1

𝑛

𝑛

∑
𝑖=1
𝑥𝑖

◻ Exercice 37 Soit 𝑓 ∶ R𝑛 Ð→ R une application de classe C 2. Montrer qu’elle est convexe si et
seulement si sa matrice hessienne est positive (appartient à 𝑆+𝑛 ) en tout point.

◻ Exercice 38 Déterminer les extrema (locaux et globaux) des fonctions 𝑓 suivantes sur leur
domaine de définition sous la contrainte 𝑔(𝑥,𝑦) = 0.

𝑎) 𝑓 (𝑥,𝑦) = 𝑥𝑦 𝑔(𝑥,𝑦) = 𝑥2 +𝑦2 − 𝑥 −𝑦
𝑏) 𝑓 (𝑥,𝑦) = ln(𝑥 −𝑦) 𝑔(𝑥,𝑦) = 𝑥2 +𝑦2 − 2
𝑐) 𝑓 (𝑥,𝑦) = 𝑥2 +𝑦2 𝑔(𝑥,𝑦) = 𝑥2

4 −
𝑦2

16 − 1
𝑑) 𝑓 (𝑥,𝑦) = 2𝑥 +𝑦 𝑔(𝑥,𝑦) = 𝑥2 + 𝑥𝑦 −𝑦2 − 1
𝑒) 𝑓 (𝑥,𝑦) = 1

𝑥 +
1
𝑦 𝑔(𝑥,𝑦) = 1

𝑥2 +
1
𝑦2 −

1
2

𝑔) 𝑓 (𝑥,𝑦) = 𝑥2 +𝑦2 + (𝑦 − 𝑥)2 𝑔(𝑥,𝑦) = 𝑥2 +𝑦2 + 2𝑦 − 2𝑥 − 6 = 0
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◻ Exercice 39 Soient 𝑎,𝑏, 𝑐 trois réels tels que 0 < 𝑎 < 𝑏 < 𝑐 .

Déterminer les extrema de 𝑓 ∶ R3 → R, (𝑥,𝑦, 𝑧) ↦ 𝑥2 +𝑦2 + 𝑧2 sur la surface 𝑆 = {(𝑥,𝑦, 𝑧) ∈ R3, 𝑥
4

𝑎4 +
𝑦4

𝑏4 +
𝑧4

𝑐4 = 1}.

◻ Exercice 40 Soit 𝑓 ∶M2(R)→ R, (𝑎 𝑏
𝑐 𝑑
)↦ 𝑎2 +𝑏2 + 𝑐2 +𝑑2.

Déterminer les extrema de 𝑓 sur 𝑆𝐿2(R). Montrer que ces extrema sont atteints en les points de
𝑆𝑂2(R), et seulement en ces points.

◻ Exercice 41 Soit 𝑛 ∈ N∗ et 𝑥1, . . . , 𝑥𝑛 ∈ R∗+. Montrer que

(
𝑛

∏
𝑖=1
𝑥𝑖)

1/𝑛

= min{1
𝑛

𝑛

∑
𝑖=1
𝑢𝑖𝑥𝑖 ; (𝑢1, . . . ,𝑢𝑛) ∈ (R∗+)𝑛,

𝑛

∏
𝑖=1
𝑢𝑖 = 1}

En déduire que pour tous 𝑦1, . . . ,𝑦𝑛 > 0,

(
𝑛

∏
𝑖=1
𝑥𝑖)

1/𝑛

+ (
𝑛

∏
𝑖=1
𝑦𝑖)

1/𝑛

⩽ (
𝑛

∏
𝑖=1
(𝑥𝑖 +𝑦𝑖))

1/𝑛
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CHAPITRE 19

Algèbre générale

1 Applications du cours

A Groupes : généralités

◻ Exercice 1
1) Montrer que (] − 1, 1[,∗) est un groupe pour la loi ∗ définie par :

∀ (𝑥,𝑦) ∈ ] − 1, 1[2 , 𝑥 ∗𝑦 = 𝑥 +𝑦
1 + 𝑥𝑦

2) Pour 𝑥 ∈] − 1,+1[, exprimer 𝑥(𝑛) en fonction de 𝑥 et 𝑛.

On pourra utiliser une formule de trigonométrie hyperbolique.

◻ Exercice 2 Soit 𝐴 =
⎛
⎜⎜
⎝

0 −23 −
2
3

2
3 0 −13
2
3

1
3 0

⎞
⎟⎟
⎠

1) Calculer 𝐵 = 𝐴2, 𝐶 = 𝐴3, 𝐴 +𝐶 et𝑈 = 𝐴4.
2) Montrer que : ({𝑈 ,𝐴, 𝐵,𝐶},×) est un groupe commutatif.
◻ Exercice 3 Soient (𝐺1, .) et (𝐺2,∗) deux groupes. On rappelle que le produit cartésien𝐺1 ×𝐺2,
muni de la loi produit :(𝑥1, 𝑥2)⊗ (𝑦1,𝑦2) = (𝑥1.𝑦1, 𝑥2 ∗𝑦2) est un groupe.

1) Soit𝐻 le groupe ({−1, 1},×). En notant 𝑒, 𝑎,𝑏, 𝑐 les éléments de𝐻×𝐻 , faire la table de ce dernier
groupe.

2) Montrer que le groupe produit de (R+∗,×) par (U,×) est isomorphe au groupe (C∗,×)

◻ Exercice 4 Soit (𝐺, .) un groupe .Montrer que la réunion d’une suite croissante de sous-groupes
de 𝐺 est un sous-groupe de𝐺 .

◻ Exercice 5 Soit ∗ la loi de composition interne définie par :

∀(𝑥,𝑦) ∈ R2 , 𝑥 ∗𝑦 = 𝑥 +𝑦 − 𝑥𝑦

1) Propriétés de la loi ∗?
2) Pour la loi ∗, R ∖ {1} est-il un groupe?
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3) Pour 𝑥 ∈ R et 𝑛 ∈ N, exprimer l’itéré 𝑛 fois de 𝑥 par ∗.

◻ Exercice 6 Soit 𝐷 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 𝑥 𝑦
0 1 𝑧
0 0 1

⎞
⎟
⎠
/(𝑥,𝑦, 𝑧) ∈ R3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

1) Montrer que 𝐷 est un groupe multiplicatif.
2) Déterminer le centre du groupe (i.e. les éléments de 𝐷 qui commutent avec tous les autres).

◻ Exercice 7 Soit (𝐺,∗) un groupe. On note Aut(𝐺) l’ensemble de ses automorphismes. La com-
position munit Aut(𝐺) d’une structure de groupe.

Pour tout élément 𝑔 ∈𝐺 on note 𝜑𝑔 l’application de𝐺 dans lui-même définie par

𝜑𝑔 ∶ ℎ ↦ 𝑔ℎ𝑔−1

1) Soit 𝑔 ∈𝐺 , montrer que 𝜑𝑔 est un automorphisme de𝐺 .
2) On considère l’application Φ ∶ 𝐺 → Aut(𝐺) qui associe à 𝑔 l’application 𝜑𝑔. Montrer que Φ est

un morphisme de groupe.

B Groupe (Z/𝑛Z,+), ordre d’un élément d’un groupe, générateurs des
groupes monogènes

◻ Exercice 8 Soient (𝐺, .), (𝐻, .) des groupes cycliques de cardinaux respectifs𝑚 et 𝑛.

Déterminer une condition nécessaire et suffisante pour que le produit de ces groupes soit cyclique.

C Groupe symétrique

◻ Exercice 9
1) Vérifier que (1, 3, 4, 7) = (1, 3)(3, 4)(4, 7).
2) On considère le cycle 𝛾 = (𝑎1, 𝑎2, . . . , 𝑎𝑝) ∈S𝑛 (2 ⩽ 𝑝 ⩽ 𝑛) où les 𝑎𝑖 sont à deux à deux distincts.

Démontrer que 𝛾 =
𝑝−1
∏
𝑖=1
(𝑎𝑖, 𝑎𝑖+1) = (𝑎1, 𝑎2) ○ (𝑎2, 𝑎3) ○ . . . ○ (𝑎𝑝−1, 𝑎𝑝).

◻ Exercice 10 On considère la permutation 𝜎 = ( 1 2 3 4 5 6 7 8 9
3 7 8 9 4 5 2 1 6

) ∈S9.

1) Décomposer 𝜎 en produit de cycles.
2) Décomposer 𝜎 en produit de transpositions.
3) Quel l’ordre de 𝜎 dans ∈S9 ? Calculer 𝜎1000.
4) Déterminer la signature de 𝜎 .

◻ Exercice 11 On considère la permutation 𝜎 = ( 1 2 3 4 5 6 7 8
1 4 3 2 7 8 6 5

) ∈S8.

1) Décomposer 𝜎 en produit de cycles.
2) Décomposer 𝜎 en produit de transpositions.
3) Déterminer la signature de 𝜎 .

◻ Exercice 12 Soient 𝜏1 et 𝜏2 deux transpositions deS𝑛 . Montrer que 𝜏1 ○𝜏2 = 𝑖𝑑 ou (𝜏1 ○𝜏2)2 = 𝑖𝑑
ou (𝜏1 ○ 𝜏2)3 = 𝑖𝑑 .

◻ Exercice 13 Soit 𝜎 ∈ S9, 𝜎 = (
1 2 3 4 5 6 7 8 9
7 9 6 1 8 3 4 2 5

). Calculer 𝜎2000.
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n) Dans S7, écrire 𝜎 = 𝜌3 ○ 𝜌2 ○ 𝜌1 puis 𝜎 ′ = 𝜌2 ○ 𝜌1 ○ 𝜌3 comme produit de cycles opérant sur des
ensembles disjoints où :

𝜌1 = (1, 3, 5, 2) , 𝜌2 = (2, 6, 5, 7) , 𝜌3 = (5, 4, 7, 3)

Même question dansS5 avec 𝜎 = (1, 4) ○ (1, 2, 3) ○ (4, 5) ○ (1, 4).

◻ Exercice 15 Soit 𝐸 = {1, 2, 3, 4, 5, 6}
1) Nombre de permutations de 𝐸 ?
2) Soit 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 une permutation de 𝐸 (l’image de 𝑖 ∈ 𝐸 est 𝑥𝑖 ).

On pose 𝑁 le nombre dont l’écriture en base 10 est 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 et on classe ces nombres
(ensemble noté 𝑆) par ordre croissant.

Quel est le premier, le dernier, le 121ième ?

Que vaut ∑
𝑁 ∈𝑆

𝑁 ?

3) Montrer qu’il existe 𝑘 ∈ N tel que :

∀𝑛 ∈ 𝑆 , ∃𝑛′ ∈ 𝑆 tel que 𝑛 +𝑛′ = 𝑘

Exemple de 𝑘 ? Retrouver ∑
𝑁 ∈𝑆

𝑁 .

D Anneaux : généralités

◻ Exercice 16 Soit𝑚 un nombre réel. Pour (𝑥,𝑦) et (𝑥 ′,𝑦′) appartenant à R2, on pose :

(𝑥,𝑦) ∗ (𝑥,𝑦) = (𝑥𝑥 ′ +𝑚𝑦𝑦′, 𝑥𝑦′ +𝑦𝑥 ′)

1) Démontrer que (R2,+,∗) est un anneau commutatif.
2) Pour quelles valeurs du réel𝑚 cet anneau est-il intègre?

◻ Exercice 17 Soit (𝐴,+, .) un anneau , (𝑎,𝑏) ∈ 𝐴2 tels que :

𝑎.𝑏 +𝑏.𝑎 = 1 , 𝑎2.𝑏 +𝑏.𝑎2 = 𝑎

1) Montrer que : 𝑎2.𝑏 = 𝑏.𝑎2 et 2𝑎.𝑏.𝑎 = 𝑎.
2) Etablir que 𝑎 est inversible et que son inverse est 2𝑏.

◻ Exercice 18 On pose : ∀(𝑥,𝑦) ∈ R2, 𝑥 ⊕𝑦 = 𝑥 +𝑦 + 1 et 𝑥 ⊗𝑦 = 𝑥 +𝑦 − 𝑥𝑦.
Démontrer que (R,⊕,⊗) est un corps commutatif.

◻ Exercice 19 Soit 𝐴 = ( 1 −1
1 1

). Montrer que : 𝐻 = {𝑎𝐼2 +𝑏𝐴/(𝑎,𝑏) ∈ R2} est un corps.

◻ Exercice 20 Soit 𝐴 l’ensemble des applications 𝑓 ∶ R Ð→ R de la forme

𝑓 (𝑥) = 𝑎0 +
𝑛

∑
𝑘=1

𝑎𝑘 cos(𝑘𝑥), 𝑛 ∈ N, 𝑎𝑖 ∈ R.

1) Montrer que 𝐴 est un sous-anneau de F (R,R).
2) Soit 𝑓 ∈ 𝐴. Montrer que si 𝑓 = 0, alors les coefficients 𝑎𝑘 sont tous nuls.
3) En déduire que 𝐴 est intègre.

◻ Exercice 21 Soit 𝛼 ∈ Q+∗ tel que
√
𝛼 /∈ Q , et Q[

√
𝛼] = {𝑟 + 𝑟 ′

√
𝛼 ; (𝑟, 𝑟 ′) ∈ Q2}.

Montrer que Q[
√
𝛼] est un corps pour les lois usuelles .
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E Arithmétique dans Z

◻ Exercice 22
1) Vérifier que 429 et 700 sont premiers entre eux.
2) Déterminer tous les couples (𝑢, 𝑣) ∈ Z2 tels que : 700𝑢 + 429 𝑣 = 1.

◻ Exercice 23 Soit 𝑛 ∈ N. déterminer le pgcd de 5𝑛 + 6𝑛 et 5𝑛+1 + 6𝑛+1.

◻ Exercice 24 Calculer 10𝑘 modulo 7 et en déduire
10
∑
𝑘=1

1010
𝑘 ≡ 5 (7).

◻ Exercice 25 Quel est le reste de la division euclidienne de 2792217 par 5?

◻ Exercice 26 Calculer le reste modulo 41 de l’entier 512002
100
, le reste modulo 17 de 10351255642

◻ Exercice 27 Quel est le reste de la division euclidienne de 51200100 par 41?
Même question avec 198610000 et 31 , puis 10351255642 et 17.

◻ Exercice 28 Montrer que : ∀ (𝑎,𝑏) ∈ (Z⋆)2 , 𝑎2 ∣𝑏2 Ô⇒ 𝑎 ∣𝑏.

F Anneau (Z/𝑛Z,+, .)

◻ Exercice 29 Résoudre dans Z/20Z × Z/20Z le système : { 4̄𝑥 + 5̄𝑦 = 13
2̄𝑥 + 3̄𝑦 = 11

◻ Exercice 30 Résoudre dans Z/30Z × Z/30Z : { 3̄𝑥 + 7̄𝑦 = 3
6̄𝑥 − 4̄𝑦 = 0

◻ Exercice 31 Résoudre dans Z/37Z : 𝑥2 − 31𝑥 + 18 = 0.

◻ Exercice 32 Résoudre dans Z/35Z : 𝑥2 − 31𝑥 + 18 = 0.

◻ Exercice 33 On considère (Z/20Z)⋆, l’ensemble des éléments inversibles pour la multiplication
dans l’anneau ((Z/20Z) ,+,×). Déterminer ses éléments et le reconnaître comme isomorphe à un
groupe produit simple.

2 Exercices plus élaborés

A Groupes : généralités

◻ Exercice 34 Soient (𝐺, .) un groupe , 𝐻 et 𝐾 deux sous-groupes de𝐺 .

On note 𝐻𝐾 = {ℎ.𝑘/(ℎ,𝑘) ∈ 𝐻 ×𝐾} . Montrer que les propriétés suivantes sont équivalentes :

i) 𝐻𝐾 est un sous-groupe de𝐺 , ii) 𝐻𝐾 ⊂ 𝐾𝐻

iii) 𝐾𝐻 est un sous-groupe de𝐺 , iv) 𝐾𝐻 ⊂ 𝐻𝐾

◻ Exercice 35 Sur 𝐺 = R∗ × R , on définit la loi de composition interne ⋆ par :

∀ (𝑎,𝑏), (𝑎′,𝑏′) ∈ R⋆ × R , (𝑎,𝑏) ⋆ (𝑎′,𝑏′) = (𝑎𝑎′,𝑏𝑎′ +𝑏′)

Montrer que (𝐺,∗) est isomorphe au groupe des transformations affines de la droite réelle (muni de
la loi ○). Montrer que (𝐺,∗) est un groupe non abélien .

Chercher les sous-groupes abéliens de𝐺 .
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◻ Exercice 36

Démontrer qu’un sous-groupe d’un groupe cyclique est cyclique. Que dire de son ordre?

◻ Exercice 37

Soit (𝐺,∗) un groupe fini et 𝜒 un morphisme de (𝐺,∗) dans (C∗,×). Montrer que

∑
𝑔∈𝐺

𝜒(𝑔) = { 0 si 𝜒 n’est pas constante
Card(𝐺) sinon

B Ordre d’un élément d’un groupe

◻ Exercice 38 Soit (𝐺, .) un groupe abélien fini.

1) Soient 𝑥,𝑦 ∈𝐺 . Soient𝑚 et𝑛 les ordres respectifs de 𝑥 et𝑦. On suppose que𝑚 et𝑛 sont premiers
entre eux. Montrer que 𝑥𝑦 est d’ordre𝑚𝑛.

2) On appelle exposant de (𝐺, .) le plus grand des ordres de ses éléments.

Montrer que l’ordre de chaque élément de𝐺 divise l’exposant de (𝐺, .).
3) Soit 𝑝 un nombre premier. Montrer que le groupe (Z/𝑝Z)∗ des éléments inversibles de Z/𝑝Z

est cyclique.
4) Montrer que l’exposant de (𝐺, .) et le cardinal de𝐺 ont mêmes facteurs premiers.

C Groupes de permutations

◻ Exercice 39 Soit S𝑛 le groupe des permutations de [[1, 𝑛]]. On note 𝑓 (𝑛) le plus grand des
ordres des éléments deS𝑛 .

1) Montrer que 𝑓 (𝑛) = max{ppcm(𝑎1, . . . , 𝑎𝑘), 𝑘 ∈ N∗, 𝑎1, . . . , 𝑎𝑘 ∈ N∗, 𝑎1 + . . . + 𝑎𝑘 = 𝑛}.
2) Montrer que pour tous 𝑘,𝑎1, . . . , 𝑎𝑘 ∈ N∗, on a :

𝑘

∏
𝑖=1
𝑎𝑖 ⩽ ppcm(𝑎1, . . . , 𝑎𝑘) ∏

1⩽𝑖< 𝑗⩽𝑘
pgcd(𝑎𝑖, 𝑎 𝑗)

3) Soit 𝑝 ∈ N∗. Montrer que 𝑛𝑝 = 𝑂
𝑛→∞
(𝑓 (𝑛)).

◻ Exercice 40 Soit 𝑛 ⩾ 3. Soit 𝜎 ∈S𝑛 . Soit 𝑎 ≠ 𝑏 dans [[1, 𝑛]].

1) Simplifier 𝜎 ○ (𝑎,𝑏) ○ 𝜎−1.
2) Déterminer l’ensemble des permutations qui commutent avec (𝑎,𝑏).
3) Déterminer le centre de S𝑛 , c’est-à-dire les permutations S𝑛 qui commutent avec toutes les

autres.

◻ Exercice 41
1) Montrer que pour tout 𝜎 ∈S𝑛 et tout cycle 𝛾 = (𝑎1, . . . , 𝑎𝑝) on a 𝜎 ○𝛾 ○𝜎−1 = (𝜎(𝑎1), . . . , 𝜎(𝑎𝑝)).
2) Vérifier que : (2, 5) = (4, 5) ○ (2, 4) ○ (4, 5), puis que
(2, 5) = (4, 5) ○ (3, 4) ○ (2, 3) ○ (3, 4) ○ (4, 5).

3) Soit 𝑛 un entier naturel supérieur ou égal à 2.
En généralisant ce procédé, démontrer que la partie 𝐵 = {(𝑖, 𝑖 +1)/1 ⩽ 𝑖 < 𝑛} est génératrice du
groupe symétriqueS𝑛 .
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4) Démontrer que cette partie génératrice est minimale (c’est-à-dire qu’aucune de ses sous-parties
strictes n’est génératrice). (On démontrera que 𝑛 − 2 transpositions appartenant à 𝐵 n’en-
gendrent pasS𝑛)

5) Démontrer que la transposition 𝜏 = (1, 2) et le cycle 𝛾 = (1, 2, . . . , 𝑛) engendrentS𝑛 .
6) {𝜏,𝛾} est-elle une partie génératrice minimale deS𝑛 ?

D Anneaux : généralités

◻ Exercice 42
1) Montrer que l’ensemble 𝐸 = {𝑥 + 𝑦

√
2/(𝑥,𝑦) ∈ Z2}, muni de l’addition et de la multiplication

des réels, est un anneau.
2) Déterminer l’ensemble 𝑈 des éléments inversibles de 𝐸 (on utilisera l’application 𝑁 qui à 𝑧 =
𝑥 +𝑦

√
2 ∈ 𝐸 associe 𝑁 (𝑧) = 𝑥2 − 2𝑦2).

◻ Exercice 43 Déterminer les automorphismes du corps Q +Q
√
2.

◻ Exercice 44 Montrer que

𝐾 = {( 𝑥 𝑦
−5𝑦 𝑥 + 4𝑦 ) ; (𝑥,𝑦) ∈ R

2}

est un corps isomorphe à C.

◻ Exercice 45 Soit 𝐴 un anneau intègre et fini, non réduit à {0}, et soit 𝑎 un élément non nul de
𝐴. Montrer que l’application de 𝐴 vers 𝐴 définie par : 𝑥 ↦ 𝑎𝑥 est bijective. En déduire que 𝐴 est un
corps.

◻ Exercice 46 Soit 𝐴 un anneau et 𝑥 ∈ 𝐴. Il est dit nilpotent s’il existe 𝑛 ∈ N∗ tel que 𝑥𝑛 = 0.
1) Montrer que si 𝑥𝑦 est nilpotent alors 𝑦𝑥 l’est aussi.
2) Montrer que si 𝑥 et 𝑦 sont nilpotents et commutent , alors 𝑥 +𝑦 et 𝑥𝑦 sont nilpotents.
3) Montrer que si 𝐴 est commutatif , l’ensemble 𝑁 des éléments nilpotents est un idéal de 𝐴.
4) Montrer que : 𝑥 nilpotentÔ⇒ (1 − 𝑥) est inversible (et calculer son inverse).
◻ Exercice 47
1) Démontrer l’identité 𝑥3 +𝑦3 + 𝑧3 − 3𝑥𝑦𝑧 = (𝑥 +𝑦 + 𝑧)(𝑥2 +𝑦2 + 𝑧2 − 𝑥𝑦 −𝑦𝑧 − 𝑧𝑥).
2) Montrer que 𝑗 ∶ Q3 → R définie par 𝑗 ∶ (𝑎,𝑏, 𝑐)↦ 𝑎 +𝑏 3

√
2 + 𝑐 3
√
4 est injective

3) Montrer que {𝑎 +𝑏 3
√
2 + 𝑐 3
√
4 ; (𝑎,𝑏, 𝑐) ∈ Q3} est un sous-corps de R.

◻ Exercice 48 Soit 𝑎 ∈ C. On pose

Q[𝑎] = {𝑃(𝑎), 𝑃 ∈ Q[𝑋 ]} 𝐼(𝑎) = {𝑃 ∈ Q[𝑋 ], 𝑃(𝑎) = 0}

On dit que 𝑎 est algébrique si et seulement si il existe 𝑃 ∈ Q[𝑋 ] tel que 𝑃 /= 0 et 𝑃(𝑎) = 0.

1) Montrer que si 𝑎 est algébrique, alors :

— Il existe un polynôme𝑀 ∈ Q[𝑋 ] unitaire et irréductible sur Q tel que 𝐼(𝑎) =𝑀Q[𝑋 ].
— Q[𝑎] est un Q-espace vectoriel de dimension finie.
— Q[𝑎] est un corps

2) Montrer que si Q[𝑎] est un Q-espace vectoriel de dimension finie, alors 𝑎 est algébrique.
3) Soient 𝑎,𝑏 ∈ C des nombres algébriques. Montrer que la famille (𝑎𝑝𝑏𝑞)𝑝,𝑞∈N est de rang fini. En

déduire que 𝑎𝑏 et 𝑎 +𝑏 sont algébriques.
4) Que dire de l’ensemble des nombres algébriques?
5) Déterminer dimQQ[

√
2 +
√
3].
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E Arithmétique dans Z

◻ Exercice 49 Pour quels entiers 𝑛 a-t-on 𝑛12 −𝑛8 −𝑛4 + 1 ≡ 0 mod (512)?

◻ Exercice 50 Résoudre dans N2 : 11(𝑥 ∧𝑦) + (𝑥 ∨𝑦) = 203.

◻ Exercice 51 Montrer que pour tout 𝑛 entier relatif, 𝑛7 −𝑛 est divisible par 42.

◻ Exercice 52 Résoudre dans Z × Z × Z l’équation : 2𝑥 + 5𝑦 − 11𝑧 = 1.

◻ Exercice 53
1) Montrer que si 𝑥 et 𝑦 sont premiers entre eux, il en est de même de 𝑥 +𝑦 et 𝑥𝑦.
2) Etudier la réciproque.

3) Résoudre dans N2 : { 𝑥 +𝑦 = 56
𝑥 ∨𝑦 = 105

◻ Exercice 54 Soient 𝑎,𝑏, 𝑐 ∈ N. Montrer que (𝑎𝑏 − 1)(𝑎𝑐 − 1) divise (𝑎 − 1)(𝑎𝑏𝑐 − 1).

◻ Exercice 55 On pose, pour 𝑛 ∈ N, 𝐹𝑛 = 22
𝑛 + 1.

1) Montrer que si𝑚 et 𝑛 sont deux entiers distincts, alors 𝐹𝑛 et 𝐹𝑚 sont premiers entre eux.
2) Montrer que 𝐹𝑛 divise 2𝐹𝑛 − 2.
◻ Exercice 56 Soient 𝑎 ∈ N ∖ {0, 1} , deux entiers naturels𝑚 et 𝑛 tels que𝑚 > 𝑛.

Montrer que : pgcd(𝑎𝑚 − 1, 𝑎𝑛 − 1) = 𝑎pgcd(𝑚,𝑛) − 1.

F Anneau (Z/𝑛Z,+, .)

◻ Exercice 57 Déterminer les entiers relatifs 𝑥 vérifiant simultanément :

3𝑥 − 10 ∈ 7Z , 11𝑥 + 8 ∈ 17Z , 16𝑥 − 1 ∈ 5Z

◻ Exercice 58 Résoudre l’équation 𝑥2 = 1 dans Z/105Z.

◻ Exercice 59 Étude de (Z/2𝑛Z)∗.
1) Déterminer les éléments et le cardinal de (Z/2𝑛Z)∗.
2) Pour tout entier 𝑎 dans Z tel que 𝑎 ∈ (Z/2𝑛Z)∗ et tout 𝑛 ≥ 3, calculer 𝑎2𝑛−2 modulo2𝑛 .

On pourra procéder par récurrence.
3) Le groupe (Z/2𝑛Z)∗ est-il cyclique?
◻ Exercice 60 Soit 𝑛 ∈ N ∖ {0, 1}, et 𝑑 ∈ N tel que 𝑑 ∣𝑛.
Déterminer les sous-groupes d’ordre 𝑑 de Z/𝑛Z.

◻ Exercice 61 Soit 𝑝 un nombre premier.

1) Déterminer les inversibles de Z/𝑝2Z.
2) Soit 𝑘 un entier naturel. Déterminer la classe de 𝑘𝑝(𝑝−1) modulo 𝑝2.

On pourra utiliser le théorème d’Euler.

◻ Exercice 62 Soit 𝑝 un nombre premier impair.

1) Que dire de Z/𝑝Z?
2) Pour tout 𝑘 ∈ Z, on note 𝑘 la classe de 𝑘 dans Z/𝑝Z.

Démontrer que 1̄−1 + 2̄−1 + . . . + (𝑝 − 1)−1 = 0̄.
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3) Soit 𝑘 ∈ [[1, 𝑝 − 1]]. Montrer que 𝑝 ∣(𝑝𝑘).

On note 𝑥𝑘 = 1
𝑝 (

𝑝
𝑘). Montrer que 𝑥𝑘 = (−1̄)𝑘−1𝑘−1.

4) On pose𝑚 = 2𝑝−1−1
𝑝 . En vertu du petit théorème de Fermat,𝑚 est un entier.

Démontrer que 𝑚̄ = (1̄)−1 + 3̄−1 + 5̄−1 + . . . + (𝑝 − 2)−1.

3 Exercices nécessitant plus d’inspiration

◻ Exercice 63

Soit 𝐺 un groupe multiplicatif fini d’ordre 𝑛. Soit 𝐻 un sous-groupe de𝐺 d’ordre 𝑝 .

1) Montrer que pour tout 𝑎,𝑏 ∈𝐺2, 𝑎𝐻 = 𝑏𝐻 ou 𝑎𝐻 ∩𝑏𝐻 = ∅.
2) Montrer que 𝑝 divise 𝑛.
3) Supposons que 𝑛 = 𝑝𝑞 avec 𝑝 < 𝑞, et 𝑞 premier.

Montrer (par l’absurde),qu’il existe au plus un sous-groupe d’ordre 𝑞.
4) Si 𝑛 = 9, montrer qu’il existe au moins un sous-groupe de𝐺 d’ordre 3.

Montrer qu’il en existe 1 ou 4.

◻ Exercice 64 (Les 𝑝− groupes de Prüfer)

Soit 𝑝 > 1 un entier premier. Soit𝑚 ∈ N∗, on note U𝑚 est le groupe des racines𝑚ièmes de l’unité.

Soit 𝐺𝑝 = {𝑧 ∈ C , ∃𝑘 ∈ N , 𝑧(𝑝
𝑘) = 1}.

1) Montrer que𝐺𝑝 est un groupe multiplicatif.
2) Montrer que tous les sous-groupes de𝐺𝑝 sont cycliques, à l’exclusion de𝐺𝑝 , et qu’aucun d’entre

eux n’est maximal au sens de l’inclusion.

On pourra considérer la famille des (𝑈𝑝𝑘)𝑘∈N.
3) Montrer que𝐺𝑝 n’est pas engendré par un nombre fini d’éléments.
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